학부소개 세계 최고 IT 강국,
KAIST 전기 및
전자공학부가 만들어갑니다.
세계 최고 IT 강국, KAIST 전기 및 전자공학부가 만들어갑니다.

전기및전자공학부는 KAIST공과대학 소속의 학교
최대학과로서 대한민국, 나아가 전세계 전기및
전자공학 분야의 발전을 기원하고 있습니다.

  • 1
  • 6
Learn More
학부소개 세계 최고 IT 강국,
KAIST 전기 및
전자공학부가 만들어갑니다.
세계 최고 IT 강국, KAIST 전기 및 전자공학부가 만들어갑니다.

전기및전자공학부는 KAIST공과대학 소속의 학교
최대학과로서 대한민국, 나아가 전세계 전기및
전자공학 분야의 발전을 기원하고 있습니다.

  • 2
  • 6
Learn More
학부소개 세계 최고 IT 강국,
KAIST 전기 및
전자공학부가 만들어갑니다.
세계 최고 IT 강국, KAIST 전기 및 전자공학부가 만들어갑니다.

전기및전자공학부는 KAIST공과대학 소속의 학교
최대학과로서 대한민국, 나아가 전세계 전기및
전자공학 분야의 발전을 기원하고 있습니다.

  • 3
  • 6
Learn More
학부소개 세계 최고 IT 강국,
KAIST 전기 및
전자공학부가 만들어갑니다.
세계 최고 IT 강국, KAIST 전기 및 전자공학부가 만들어갑니다.

전기및전자공학부는 KAIST공과대학 소속의 학교
최대학과로서 대한민국, 나아가 전세계 전기및
전자공학 분야의 발전을 기원하고 있습니다.

  • 4
  • 6
Learn More
학부소개 세계 최고 IT 강국,
KAIST 전기 및
전자공학부가 만들어갑니다.
세계 최고 IT 강국, KAIST 전기 및 전자공학부가 만들어갑니다.

전기및전자공학부는 KAIST공과대학 소속의 학교
최대학과로서 대한민국, 나아가 전세계 전기및
전자공학 분야의 발전을 기원하고 있습니다.

  • 5
  • 6
Learn More
AI in EE AI and machine learning
are a key thrust
in EE research
AI and machine learning are a key thrust in EE research

AI/machine learning  efforts are already   a big part of   ongoing
research in all 6 divisions - Computer, Communication, Signal,
Wave, Circuit and Device - of KAIST EE 

  • 6
  • 6
Learn More
Previous slide
Next slide

Highlights

GLhMuWRa0AAY7EI

전기및전자공학부 김회린 교수 연구팀, 국제 최우수 음향, 음성 및 신호처리 학술대회 최우수 학생 논문상 (Best Student Paper Award) 수상

 

<(왼쪽부터) 상장 사진, 수상식 사진, 장강욱 박사과정 사진 (제1저자), 김성년 박사과정 사진>
 
전기및전자공학부 김회린 교수 연구팀은 국제 최우수 신호 및 음성, 음향 학술대회 중 하나인 ‘IEEE 국제 음향, 음성 및 신호처리 학회(International Conference on Acoustics, Speech, and Signal Processing, ICASSP)’에서 최우수 학생 논문상(Best Student Paper Award)을 수상했다고 발표했다. 이는 제출된 5576편의 논문들 중, 교육 기관에서 작성한 논문 상위 5편에게만 주어지는 영예이다.
 
전기및전자공학부 장강욱 박사과정(제1저자), 김재철AI대학원 김성년 박사과정, 김회린 교수로 구성된 연구팀은 음성 자기지도학습(Speech Self-Supervised Learning, Speech SSL) 모델의 압축을 위해 음성 간의 시간적 관계를 새로운 증류 손실 함수로 제안하여 최우수학생논문상을 수상했다.
 
음성 자기지도학습 모델은 음성인식과 화자인식과 같은 다양한 음성 과제에서 우수한 성능을 보이지만, 매우 큰 파라미터 개수로 인해 on-device 적용과 같은 실용성이 아직은 부족한 상태이다. 따라서 이들 모델의 파라미터 개수를 지식 증류(Knowledge Distillation, KD)를 통해 줄이는 압축 연구가 많이 진행되어 왔다. 그러나 현재까지의 기술들은 선생 모델의 음성 표현을 학생 모델에게 직접적으로 일치시키는 연구가 대부분이었으나, 이것이 모델 표현력이 약한 학생 모델들에게 과한 제한조건이 되는 등의 문제가 있었다.
 
Untitled
<김회린 교수 연구팀이 제안하는 음성의 시간적 관계성 손실 함수 모식도>
 
김회린 교수 연구팀은 음성 프레임들 간의 시간적 관계성을 표현하는 지표를 다양하게 탐색하여, 음성 자기지도학습 모델에 적합한 손실 함수를 제안하였다. 이를 통해 압축된 학생 모델은 총 10가지 음성 관련 과제에 대해 검증되었으며, 파라미터를 약 30% 수준으로 압축한 모델들 중에서 가장 우수한 성능을 보인다.
 
이번 연구는 정부의 재원으로 한국연구재단의 지원을 받아 수행되었다.
 

 

2 1

전기및전자공학부 권경하 교수 연구팀, 수술 후 방광 기능 전자센서로 모니터링하는 생체전자 시스템 개발

 

images 000076 photo1.jpg 6

<(좌측부터) 권경하 교수, 박도윤 석사과정, 미국 노스웨스턴대학교 김지혜 박사 사진>
 

방광절제술을 받은 환자들의 성공적인 재활을 위해 카테터* 삽입없이 방광 기능을 안전하게 모니터링하는 생체전자 시스템이 개발되어 화제다.

*카테터: 방광에 삽입하는 고무 또는 금속제의 가는 관 

 

전기및전자공학부 권경하 교수팀이 미국 노스웨스턴대 김지혜 박사와 공동연구를 통해 방광의 크기 및 압력 변화를 정확하게 측정하는 디지털 헬스케어 기술을 개발했다고 16일 밝혔다. 

 

부분적 방광절제술*은 긴 회복 기간이 필요하며, 이 기간에 요로 동역학 검사**(이하 UDS)를 통해 몸 밖으로 소변을 배출하는 기능을 간헐적으로 평가한다.

그러나 UDS는 환자 친화적이지 않으며 사용자마다 결과에 변동성이 있고, 연속적인 데이터 수집 능력이 제한된다. 또한 카테터 관련 요로 감염의 위험을 초래하며, 고위험 환자에게서는 상행성 신우신염으로 진행되기도 한다. 

이러한 UDS의 적절한 대안으로, 요로에 카테터를 삽입하지 않고 방광의 상태를 연속적이고 실시간으로 모니터링할 수 있는 기술이 필요하다.

  *부분적 방광절제술: 방광에 종양이 있는 부위를 잘라내고 나머지 방광을 이어 붙여주는 수술

  **요로 동역학 검사: 방광과 요도의 전반적인 기능을 확인하여 치료 계획을 세우기 위한 진단적 검사 

 

이에 연구팀은 방광의 충전 및 배뇨와 관련된 기계적 변형 변화를 무선 원격 측정할 수 있는 이식형 방광 플랫폼을 개발했다. 

이 시스템은 생분해성 스트레인 센서를 이용해 방광의 크기와 압력 변화를 실시간으로 측정하고, 회복 기간이 끝나면 해당 센서가 신체 내에서 자연스럽게 용해돼 사라지는 것이 특징이다. 모니터링 장비 제거를 위한 추가 수술이 필요 없고 합병증 위험을 줄이는 것은 물론 환자의 편안함과 회복 시간을 개선한다.

 

images 000076 image1.jpg 6

< 그림 1. 방광 기능 모니터링을 위한 무선 이식형 플랫폼 (위), 쥐 모델 실험 셋업 (중간), 개코원숭이 실험 셋업(아래) >

 

연구팀은 이 플랫폼을 이식 후 최대 30일까지 실시간 변화를 재현적으로 측정할 수 있음을 쥐 모델에서 입증했다. 또한 개코원숭이 실험을 통해, 해당 기술이 전통적인 UDS와 비교해 최대 8주까지 압력 측정의 일치성을 보였다. 이러한 결과는 해당 시스템이 장기간 수술 후 방광 회복 모니터링을 위한 UDS의 적절한 대안으로 사용될 수 있음을 시사한다. 

 

권경하 교수는 “비인간 영장류(개코원숭이)를 활용한 광범위한 실험을 통해 방광 기능에 대한 정확하고 신뢰할 수 있는 데이터를 제공하는 장치의 효능을 입증했다ˮ면서 “환자들의 회복 시간을 단축하고 전반적인 수술 결과를 개선하는데 활용할 수 있을 것ˮ이라고 말했다. 

 

이번 연구 결과는 국제 학술지 `미국 국립 과학원 회보 (Proceedings of the National Academy of Sciences; PNAS)’에 지난 4월 2일 발표됐다. 

(논문명 : A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery, 링크: https://www.pnas.org/doi/abs/10.1073/pnas.2400868121?af=R

한편, 이번 연구는 과학기술정보통신부 한국연구재단의 기초연구사업, 지역혁신선도연구센터사업 및 BK21의 지원을 받아 수행됐다.

 

 

Inline image 2024 04 08 11.35.51.953

전기및전자공학부 정명수 교수, 오늘 6월 IEEE/ACM ISCA 명예의 전당 헌액

 

Inline image 2024 04 08 11.35.51.953

<졍명수 교수 사진>
 

전기및전자공학부 정명수 교수가 올해 미국 전기전자공학회(IEEE)/전산공학회(ACM) 국제 컴퓨터 아키텍처 심포지엄(The International Symposium on Computer Architecture, 약칭 “ISCA”의 명예의 전당(Hall of Fame)에 오는 6월 헌액 된다.  

 

ISCA는 컴퓨터 아키텍처 연구의 최전선에서 중요한 역할을 하는 최고권위를 가진 국제적인 학술대회 (https://iscaconf.org/isca2024/)로 올해는 6월 29일부터 7월 3일까지 아르헨티나에서 열린다. 

 

정명수 교수는 올해 채택된 대규모 Cross-Silo Federated Learning에 대한 하드웨어 가속 연구로 총 8편 이상의 논문을 게재하여 명예의 전당에 포함되게 된다. 

이외에도 정명수 교수는 CXL 컴퓨터 시스템의 구조적 설계와 관련된 혁신적인 연구와 기술 발전을 소개하고, 논의하기 위하여 미국 캘리포니아 Sunnyvale에 메타(Meta)시설에서 열리는 5월 OCP Composable Memory Systems 행사에 인텔, 우버, AMD등과 함께 초대되어 KAIST의 기술과 CXL에 대한 논의 일정을 가지는 등 다양한 활동을 하고 있다.

 

2024학년도  가을학기 입학 대학원 신입생 모집과 관련하여 KAIST 대학원입학팀에 제출하는 서류 이외에 KAIST 전기및전자공학부 행정팀에 직접 제출해야 하는 서류들을 안내드립니다.

 

첨부의 파일을 다운로드 하시어, 내용 확인하시기 바랍니다.

 

* 신입생 석·박통합과정 지원자의 경우 지원 시에 지도예정교수님을 적극적으로 찾아보시고, 해당 교수님 TO와 관련하여 면담하신 후에 지원하시기를 적극적으로 권장합니다.

* 서류 제출 해당자의 경우 이메일 제출도 가능합니다. (자필 서명된 서류 스캔본으로 제출가능)

* 문의 및 제출처 : KAIST 전기및전자공학부 행정팀(E3-2, 1212호) 김태연 barbie1975@kaist.ac.kr(T.042-350-3402)

 

 

2

전기및전자공학부 최신현 교수 연구팀, (Nature 게재) 차세대 뉴로모픽 컴퓨터/메모리용 신개념 반도체 소자 개발

 

Inline image 2024 04 03 15.57.51.490

<(좌측부터) 최신현  교수, 박시온 석박통합과정, 홍석만 박사과정 사진>
 

전기및전자공학부 최신현 교수 연구팀이 디램 (DRAM) 및 낸드(NAND) 플래시 메모리를 대체할 수 있는 *초저전력 차세대 상변화 메모리 소자를 개발했다고 4일 밝혔다.

☞ 상변화 메모리(Phase Change Memory): 열을 사용하여 물질의 상태를 비정질과 결정질을 변경하여이를 통해 저항 상태를 변경함으로써 정보를 저장하거나 처리하는  메모리 소자.

 

기존 상변화 메모리는 값비싼 초미세 반도체 노광공정을 통해 제작하며  소모 전력이 높은 문제점이 있었다. 기존 연구는 메모리 동작을 위한 발열 효과를 높이기 위해 초미세 반도체 노광공정을 이용해 소자의 물리적 크기를 줄여 소비 전력을 낮추는 연구가 진행됐으나, 소비 전력 개선 정도가 작고 공정비용과 공정 난이도가 증가해 실용성 측면의 한계점이 존재했다.

 

최 교수 연구팀은 상변화 물질을 전기적으로 극소 형성하는 방식을 통해 제작한 초저전력 상변화 메모리 소자로 값비싼 노광공정 없이도 매우 작은 나노미터(nm) 스케일의 상변화 필라멘트를 자체적으로 형성하였다.

이는 공정 비용이 매우 낮을 뿐 아니라 초저전력 동작이 가능하다는 획기적인 장점이 있다

최신현 교수 연구팀은 이러한 상변화 메모리의 소비 전력 문제를 해결하기 위해상변화 물질을 전기적으로 극소 형성하는 방식으로 기존의 값비싼 초미세 노광공정을 이용한 상변화 메모리 소자보다 소비 전력이 15배 이상 작은 초저전력 상변화 메모리 소자 구현에 성공했다.

 

전기및전자공학부 박시온 석박사통합과정홍석만 박사과정이 제저자로 참여한 이번 연구는 저명한 국제 학술지 `네이처(Nature)’ 4월호에 4 4일 자 출판됐다. (논문명 : Phase-Change Memory via a Phase-Changeable Self-Confined Nano-Filament)

 

image 1

<그림1. 본 연구에서 제작한 초저전력 상변화 메모리 소자 개념도, 그리고 기존 상변화 메모리 소자 대비 초저전력 상변화 메모리 소자의 소비 전력 감소 비교>

 

한편 이번 연구는 한국연구재단 차세대 지능형반도체기술개발사업, PIM인공지능반도체핵심기술개발(소자)사업우수신진연구그리고 나노종합기술원 반도체공정기반 나노메디컬 디바이스개발 사업의 지원을 받아 수행됐다

 

전기및전자공학부 최양규 교수 연구팀, 뉴로모픽 신경망으로 컴퓨팅 난제 해결

 

images 000075 photo1.jpg 13

<(좌측부터) 최양규 교수, 윤성윤 박사과정, 서강대학교 한준규 교수(우리 대학 졸업생) 사진>
 

전기및전자공학부 최양규 교수 연구팀이 현재 반도체 산업체에서 사용되는 실리콘 소재 및 공정만을 사용해 초소형 진동 신경망을 구축하여 경계선 인식 기능을 구현했으며 난제 중 하나인 그래프 색칠 문제*를 해결했다.

*그래프 색칠 문제: 그래프 이론에서 사용되는 용어로, 그래프의 각 정점에 서로 다른 색을 할당해야 하며, 이러한 색깔 구분 문제는 방송국 주파수가 겹쳐 난시청 지역이 발생하지 않도록 주파수를 할당하는 문제 등과도 유사해 다양하게 응용되고 있음 

 

최양규 교수 연구팀이 실리콘 바이리스터 소자로 생물학적 뉴런의 상호작용을 모방한 뉴로모픽 진동 신경망을 개발했다고 3일 밝혔다. 

빅데이터 시대가 도래하면서 인공지능 기술이 예전과 비교할 수 없을 만큼 비약적으로 발전하고 있다. 

인간의 뇌 기능을 모사하는 뉴로모픽 컴퓨팅 중 하나인 상호 간 결합된 진동 신경망(oscillatory neural network)은 뉴런의 상호작용을 모방한 인공 신경망이다. 

진동 신경망은 기본단위에 해당하는 진동자의 연결 동작을 이용하며 신호의 크기가 아닌 진동을 이용해 연산을 수행하므로 소모 전력 측면에서 이점을 가지고 있다.

 

 

images 000075 image1.jpg 12

< 그림 1. 바이리스터를 사용한 발진 신경망과 그 활용 >

 

연구팀은 실리콘 기반 진동자를 이용해 진동 신경망을 개발했다. 축전기를 이용해 두 개 이상의 실리콘 진동자를 연결하면, 각각의 진동 신호가 상호작용해 시간이 경과하면서 동기화(synchronization) 된다. 

연구팀은 진동 신경망으로 영상 처리에 사용되는 경계선 인식(edge detection) 기능을 구현했으며 난제 중 하나인 그래프 색칠 문제(vertex coloring problem)를 해결했다. 

또한 이번 연구는 제조 관점에서, 복잡한 회로나 기존 반도체 공정과 호환성이 낮은 소재 및 구조 대신, 현재 반도체 산업체에서 사용되는 실리콘 관련 소재 및 공정만으로 진동 신경망을 구축했기 때문에, 양산에 바로 적용 가능하다는 장점이 있다. 

 

연구를 주도한 윤성윤 박사과정, 서강대학교 한준규 교수는 “개발된 진동 신경망은 복잡한 컴퓨팅 난제를 계산할 수 있는 뉴로모픽 컴퓨팅 하드웨어로, 자원 분배, 신약 개발, 반도체 회로 설계 및 스케줄링 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ고 연구의 의의를 설명했다. 

윤성윤 박사과정과 한준규 교수가 공동 제1 저자로 참여한 이번 연구는 나노과학 분야 저명 국제 학술지 ‘나노 레터스(Nano Letters)’에 2024년 3월 24권 9호에 출판되었으며, 추가 표지 논문(Supplementary Cover)으로 선정됐다.

 

images 000075 image2.jpg 9

< 그림 2. 나노 레터스 추가 표지 논문으로 선정된 이미지 >

 

(논문명 : A Nanoscale Bistable Resistor for an Oscillatory Neural Network) (https://pubs.acs.org/doi/full/10.1021/acs.nanolett.3c04539). 

 

한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업 및 국가반도체연구실지원핵심기술개발사업의 지원을 받아 수행됐다.

 
2024 REEsearch Party 단체사진

우리 학부 대학원 학생대표단 주최로 학술교류를 위한 2024 REESEARCH PARTY 행사가 2024년 4월 1일 개최되었습니다. 

각 디비젼의 우수논문상 수상자들이 연사로 초청되어 세미나 및 QnA를 진행하고, 참여 대학원생 간 교류시간을 가졌습니다.
행사에 많은 관심과 도움주신 교수님들과 대학원생 여러분들께 감사드립니다. 

2024 REEsearch Party 단체사진

2024 REEsearch Party 1

2024 REEsearch Party 2

2024 REEsearch Party 3

2024 REESEARCH PARTY 19

2024 REESEARCH PARTY 27

2024 REEsearch Party 6

2024 REEsearch Party 5

2024 REEsearch Party 7

2024 REESEARCH PARTY 43

 

 

2 1

전기및전자공학부 권경하 교수, 세계반도체올림픽 국제고체회로학회(ISSCC) 위원회(TPC) 한국 대표로 선정

 

Inline image 2024 03 25 11.23.06.169

<권경하 교수 사진>
 
전기전자공학자협회(IEEE)가 주관하는 국제고체회로학회(ISSCC)의 기술 프로그램 위원회(TPC) 한국 대표로 권경하 교수가 임명되었다.
 
매년 2월 미국 샌프란시스코에서 열리는 ISSCC는 세계 반도체 분야의 선도적 권위를 자랑하는 국제 학회로, “세계 반도체올림픽”이라 불린다.  1954년 창설 이래, 매년 전 세계 4,000명이상의 반도체 엔지니어들이 모여 최신 연구 결과를 교환하고 반도체 산업의 미래에 대해 논의한다.
 
학회에서 발표될 논문의 선정 및 강연과 토론 프로그램의 구성은 12개의 기술 프로그램 위원회(TPC)에서 이루어집니다. TPC 멤버들은 전 세계 다양한 국가의 학계 및 산업계의 연구자들로 구성되며, 학문적 업적을 인정받은 인물들이다.
 
한국에서는 총 23명의 TPC 위원이 활동 중입니다 (삼성전자 8명, SK 하이닉스 1명, KAIST 4명, DGIST·GIST·UNIST·고려대·서강대·서울대·연세대·이화여대·포항공대 1명, 사피온 1명).
 
권경하 교수는 2023년부터 TPC 멤버로 활동을 시작하였으며, 올해 한국 대표로 임명되었다. 
앞으로 권경하 교수는 한국에서 TPC 위원들의 회의, 기자회견 등을 주관하며, 다른 국가 대표들과의 만남을 통해 반도체 기술 발전에 기여할 예정이다.

공지사항

MORE

학부일정

세미나

날짜:

1.15(월), 10시 30분~

연사:

박현주 대표(인포웍스)

장소:

E3-2 우리별세미나실

[2024 Fall Regular Track]
Global EPSS Program
Application Guide

[전기및전자공학부
전임교원 채용]

[2024 Fall Regular Track]
Global EPSS Program
Application Guide