Minhoe Kim, Nam-I Kim, Woongsup Lee, and Dong-Ho Cho paper was published in IEEE Communications Letters

Title: Deep learning-aided SCMA

Authors: Minhoe Kim, Nam-I Kim, Woongsup Lee, Dong-Ho Cho

Sparse code multiple access (SCMA) is a promising code-based non-orthogonal multiple-access technique that can provide improved spectral efficiency and massive connectivity meeting the requirements of 5G wireless communication systems. We propose a deep learning-aided SCMA (D-SCMA) in which the codebook that minimizes the bit error rate (BER) is adaptively constructed, and a decoding strategy is learned using a deep neural network-based encoder and decoder. One benefit of D-SCMA is that the construction of an efficient codebook can be achieved in an automated manner, which is generally difficult due to the non-orthogonality and multi-dimensional traits of SCMA. We use simulations to show that our proposed scheme provides a lower BER with a smaller computation time than conventional schemes.

Figure 1. Structure of D-SCMA