KAIST(총장 이광형) 전기및전자공학부 박사과정 노유지 학생(지도교수 황의종)이 ‘2022 마이크로소프트 리서치 PhD 펠로우’에 선정되었다.
[노유지 학생]
마이크로소프트 리서치 PhD 펠로우십은 컴퓨터과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로, 올해는 전 세계에서 36명이 선발되었으며, 한국 기관에서는 KAIST 전기및전자공학부의 노유지 학생이 유일하게 선정되었다.
선정된 펠로우에게는 1만달러의 장학금과 마이크로소프트 각 분야 전문가 멘토와의 연구 토의, 인턴십 등의 혜택이 주어진다.
노유지 학생은 신뢰 가능한 인공지능(Trustworthy AI)을 위한 알고리즘 개발에 대한 탁월한 연구 성과를 인정받아 “머신러닝(Machine Learning)” 분야의 펠로우로 선정되었다.
특별히, 특정 집단을 차별하지 않는 공정한 인공지능 학습의 효율성을 획기적으로 높인 학습 방법론을 개발하고, 더 나아가 인공지능 모델의 공정성과 견고성을 동시에 달성할 수 있는 최초의 알고리즘을 제안하여 주목을 받았다.
본 연구 성과들은 머신러닝 분야 최고 국제학술대회인 ICML, ICLR, NeurIPS 등에 발표되었다. 또한 데이터마이닝 분야 최고 국제학술대회인 ACM SIGKDD에서 튜토리얼을 공동으로 진행하여, 신뢰 가능한 인공지능 기법에 대한 최신 연구 관점을 학계에 공유하였다.
현재는 엔비디아 리서치에서 연구 인턴십을 진행하며 더욱 큰 규모의 인공지능 공정성 문제를 해결할 수 있는 다양한 방법론을 개발하고 있다.
수상자 리스트 및 인터뷰는 마이크로소프트 홈페이지와 유튜브에서 확인할 수 있다.
수상자 리스트 : https://www.microsoft.com/en-us/research/academic-program/phd-fellowship/2022-recipients/
수상자 인터뷰 (글로벌) : https://www.youtube.com/watch?v=T4Q-XwOOoJc
수상자 인터뷰 (아시아) : https://www.youtube.com/watch?v=qwq3R1XU8UE
[노유지 박사과정 연구성과도: 공정한 인공지능 학습을 위한 배치 선택 기법 (좌) 및 공정하고 견고한 학습을 위한 학습 방법론 예시 (우)]