학부소개 세계 최고 IT 강국,
KAIST 전기 및
전자공학부가 만들어갑니다.
세계 최고 IT 강국, KAIST 전기 및 전자공학부가 만들어갑니다.

전기및전자공학부는 KAIST공과대학 소속의 학교
최대학과로서 대한민국, 나아가 전세계 전기및
전자공학 분야의 발전을 기원하고 있습니다.

  • 1
  • 6
Learn More
학부소개 세계 최고 IT 강국,
KAIST 전기 및
전자공학부가 만들어갑니다.
세계 최고 IT 강국, KAIST 전기 및 전자공학부가 만들어갑니다.

전기및전자공학부는 KAIST공과대학 소속의 학교
최대학과로서 대한민국, 나아가 전세계 전기및
전자공학 분야의 발전을 기원하고 있습니다.

  • 2
  • 6
Learn More
학부소개 세계 최고 IT 강국,
KAIST 전기 및
전자공학부가 만들어갑니다.
세계 최고 IT 강국, KAIST 전기 및 전자공학부가 만들어갑니다.

전기및전자공학부는 KAIST공과대학 소속의 학교
최대학과로서 대한민국, 나아가 전세계 전기및
전자공학 분야의 발전을 기원하고 있습니다.

  • 3
  • 6
Learn More
학부소개 세계 최고 IT 강국,
KAIST 전기 및
전자공학부가 만들어갑니다.
세계 최고 IT 강국, KAIST 전기 및 전자공학부가 만들어갑니다.

전기및전자공학부는 KAIST공과대학 소속의 학교
최대학과로서 대한민국, 나아가 전세계 전기및
전자공학 분야의 발전을 기원하고 있습니다.

  • 4
  • 6
Learn More
학부소개 세계 최고 IT 강국,
KAIST 전기 및
전자공학부가 만들어갑니다.
세계 최고 IT 강국, KAIST 전기 및 전자공학부가 만들어갑니다.

전기및전자공학부는 KAIST공과대학 소속의 학교
최대학과로서 대한민국, 나아가 전세계 전기및
전자공학 분야의 발전을 기원하고 있습니다.

  • 5
  • 6
Learn More
AI in EE AI and machine learning
are a key thrust
in EE research
AI and machine learning are a key thrust in EE research

AI/machine learning  efforts are already   a big part of   ongoing
research in all 6 divisions - Computer, Communication, Signal,
Wave, Circuit and Device - of KAIST EE 

  • 6
  • 6
Learn More
Previous slide
Next slide

Highlights

1

[ 황의종 교수 연구팀, 인공지능이 정확한 판단을 내리도록 돕는 새로운 학습 데이터 선택 기술 개발 ]

 

Inline image 2024 03 15 10.37.39.776

<(좌측부터) 황의종 교수, 황성현 박사과정, 김민수 박사과정 사진>
 
 
최근 실생활에 활용되는 인공지능 모델이 시간이 지남에 따라 성능이 점차 떨어지는 현상이 다수 발견되었고, 이에 따라 지속가능한 인공지능 학습 기술에 대한 필요성이 커지고 있다. AI 모델이 꾸준히 정확한 판단을 내리는 것은 더욱 안전하고 신뢰할 수 있는 인공지능을 만들기 위한 중요한 요소이다. 
 
전기및전자공학부 황의종 교수 연구팀이 시간에 따라 데이터의 분포가 변화하는 드리프트 환경에서도 인공지능이 정확한 판단을 내리도록 돕는 새로운 학습 데이터 선택 기술을 개발했다고 14일 밝혔다. 최근 인공지능이 다양한 분야에서 인간의 능력을 뛰어넘을 정도의 높은 성능을 보여주고 있지만, 대부분의 좋은 결과는 AI 모델을 훈련시키고 성능을 테스트할 때 데이터의 분포가 변하지 않는 정적인 환경을 가정함으로써 얻어진다. 하지만 이러한 가정과는 다르게 SK 하이닉스의 반도체 공정 과정에서 시간에 따른 장비의 노화와 주기적인 점검으로 인해 센서 데이터의 관측값이 지속적으로 변화하는 드리프트 현상이 관측되고 있다. 
 
시간이 지나면서 데이터와 정답 레이블 간의 결정 경계 패턴이 변경되면, 과거에 학습되었던 AI 모델이 내린 판단이 현재 시점에서는 부정확하게 되면서 모델의 성능이 점차 악화될 수 있다. 본 연구팀은 이러한 문제를 해결하기 위해, 데이터를 학습했을 때 AI 모델의 업데이트 정도와 방향을 나타내는 그래디언트(gradient)를 활용한 개념을 도입하여 제시한 개념이 드리프트 상황에서 학습에 효과적인 데이터를 선택하는 데에 도움을 줄 수 있음을 이론적으로 실험적으로 분석했다. 그리고 이러한 분석을 바탕으로 효과적인 학습 데이터 선택 기법을 제안하여, 데이터의 분포와 결정 경계가 변화해도 모델을 강건하게 학습할 수 있는 지속 가능한 데이터 중심의 AI 학습 프레임워크를 제안했다.
 
 
images 000075 image1.jpg

< 그림 1. 본 연구에서 제안한 알고리즘이 드리프트 환경에서 적절한 학습 데이터를 선택하는 예시 >

 

본 학습 프레임워크의 주요 이점은, 기존의 변화하는 데이터에 맞춰서 모델을 적응시키는 모델 중심의 AI 기법과 달리, 드리프트의 주요 원인이라고 볼 수 있는 데이터 자체를 직접 전처리를 통해 현재 학습에 최적화된 데이터로 바꿔줌으로써, 기존의 AI 모델 종류에 상관없이 쉽게 확장될 수 있다는 점에 있다. 실제로 본 기법을 통해 시간에 따라 데이터의 분포가 변화되었을 때에도 AI 모델의 성능, 즉 정확도를 안정적으로 유지할 수 있었다. 
 
제1 저자인 김민수 박사과정 학생은 “이번 연구를 통해 인공지능을 한번 잘 학습하는 것도 중요하지만, 그것을 변화하는 환경에 따라 계속해서 관리하고 성능을 유지하는 것도 중요하다는 사실을 알릴 수 있으면 좋겠다ˮ고 밝혔다. 연구팀을 지도한 황의종 교수는 “인공지능이 변화하는 데이터에 대해서도 성능이 저하되지 않고 유지하는 데에 도움이 되기를 기대한다”고 말했다. 
 

 

본 연구에는 김민수 박사과정이 제1 저자, 황성현 박사과정이 제2 저자, 그리고 황의종 교수가 교신 저자로 참여했다. 이번 연구는 지난 2월 캐나다 밴쿠버에서 열린 인공지능 최고 권위 국제학술 대회인 ‘국제 인공지능 학회(Association for the Advancement of Artificial Intelligence, AAAI)’에서 발표되었다. (논문명: Quilt: Robust Data Segment Selection against Concept Drifts) 
 

 

한편, 이 기술은 SK 하이닉스 인공지능협력센터(AI Collaboration Center; AICC)의 지원을 받은 ‘노이즈 및 변동성이 있는 FDC 데이터에 대한 강건한 학습’ 과제 (K20.05) 와 정보통신기획평가원의 지원을 받은 ‘강건하고 공정하며 확장가능한 데이터 중심의 연속 학습’ 과제 (2022-0-00157) 와 한국연구재단의 지원을 받은 ‘데이터 중심의 신뢰 가능한 인공지능’ 과제 성과다.
 

 

2024학년도  가을학기 입학 대학원 신입생 모집과 관련하여 KAIST 대학원입학팀에 제출하는 서류 이외에 KAIST 전기및전자공학부 행정팀에 직접 제출해야 하는 서류들을 안내드립니다.

 

첨부의 파일을 다운로드 하시어, 내용 확인하시기 바랍니다.

 

* 신입생 석·박통합과정 지원자의 경우 지원 시에 지도예정교수님을 적극적으로 찾아보시고, 해당 교수님 TO와 관련하여 면담하신 후에 지원하시기를 적극적으로 권장합니다.

* 서류 제출 해당자의 경우 이메일 제출도 가능합니다. (자필 서명된 서류 스캔본으로 제출가능)

* 문의 및 제출처 : KAIST 전기및전자공학부 행정팀(E3-2, 1212호) 김태연 barbie1975@kaist.ac.kr(T.042-350-3402)

 

 

3
[권경하 교수 연구팀, 당뇨병 만성상처 추적 스마트 헬스케어 기기 개발]
 
IMG 0103
<(좌측부터) 전기및전자공학부 권경하 교수, 심영민 박사과정, 중앙대 첨단소재공학과 류한준 교수 사진>
 

우리 학부 권경하 교수 연구팀이 당뇨병 등 상처 부위의 시공간 온도 변화 및 열전달 특성 추적을 통해 상처 치유 과정을 효과적으로 모니터링할 수 있는 무선 시스템을 개발했다. 중앙대학교 류한준 교수와 상처 치유 과정을 실시간으로 추적해 적절한 치료를 제공할 수 있게 해주는 디지털 헬스케어 기술을 개발했다고 5일 밝혔다.     

피부는 유해 물질로부터 인체를 보호하는 장벽 기능을 한다. 피부 손상은 집중 치료가 필요한 환자들에게 감염과 관련된 심각한 건강 위험을 초래할 수 있다. 특히 당뇨병 환자의 경우, 정상적인 혈액 순환과 상처 치유 과정에 문제가 생겨 만성 상처가 쉽게 발생한다. 이러한 만성 상처의 재생을 위해 미국에서만 매년 수백억 달러의 의료 비용이 지출되고 있다. 상처 치유를 촉진하는 다양한 방법이 있지만, 환자별 상처 상태에 따라 맞춤 관리가 필요하다.

실시간 상처 모니터링 시스템의 개략도

< 실시간 상처 모니터링 시스템의 개략도 >

이에 연구팀은 상처 부위와 주변 건강한 피부 사이의 온도 차이를 활용해 상처 내 발열 반응을 추적했으며, 열 전송 특성을 측정해 피부 표면 근처의 수분 변화를 관찰함으로써 흉터 조직의 형성 과정을 파악할 수 있는 기반으로 활용했다. 연구팀은 당뇨병이 있는 쥐를 통해 병적 상태에서 상처 치유가 지연되는 과정에서 실험을 진행했고, 수집된 데이터가 상처 치유 과정과 흉터 조직 형성을 정확히 추적할 수 있음을 입증했다.

해당 시스템은 상처가 치유된 후에 기기를 제거하는 과정에서 발생할 수 있는 조직 손상을 최소화하기 위해, 체내에서 자연 분해가 가능한 생분해성 센서 모듈과 통합됐다. 이 생분해성 모듈은 사용 후 별도로 제거할 필요 없이 몸속에서 저절로 분해되어 사라지므로, 추가적인 불편함이나 조직 손상의 위험을 최소화한다. 생분해성 재료를 사용한 이 장치는 사용 후 제거할 필요가 없으므로 상처 부위 내부에서도 모니터링할 수 있는 가능성을 제시한다.

연구를 주도한 권경하 교수는 “상처 부위의 온도와 열전달 특성을 지속적으로 모니터링함으로써, 의료 전문가들이 당뇨병 환자의 상처 상태를 더 정확하게 파악하고 적절한 치료를 제공할 수 있게 될 것으로 기대된다ˮ면서 “생분해성 센서를 사용해 상처 치유가 완료된 후 장치를 제거할 필요 없이 안전하게 분해될 수 있어, 병원뿐만 아니라 가정에서도 실시간 모니터링이 가능해질 것ˮ이라고 말했다.

연구팀은 향후 이 기기를 항균 특성을 가진 재료와 통합해, 염증 반응, 박테리아 감염 및 기타 병변을 관측 및 예방하는 기술로 확장할 계획이다. 온도 및 열전달 특성 변화를 통해 감염 수준을 감지 함으로써 병원이나 가정에서 실시간으로 사용할 수 있는 항균, 범용 상처 모니터링 플랫폼을 제공하는 것을 목표로 한다. 

생분해성 상처 모니터링 센서 이미지 - 저널 표지

< 생분해성 상처 모니터링 센서 이미지 – 저널 표지 >

이번 연구 결과는 국제 학술지 `어드밴스드 헬스케어 머티리얼스(Advanced Healthcare Materials)’에 지난 2월 19일 발표됐으며, 표지 논문(Inside Back Cover Journal)으로 선정됐다. (논문명 : Materials and Device Designs for Wireless Monitoring of Temperature and Thermal Transport Properties of Wound Beds during Healing)

한편, 이번 연구는 한국연구재단의 기초연구사업, 지역혁신선도연구센터사업 및 BK21의 지원을 받아 수행됐다.

2

체온으로 부드러워지는 전자잉크 최초 개발​

images 000074 photo1

< 전기및전자공학부 정재웅 교수, 신소재공학과 스티브박 교수, 신소재공학과 권도아 학사과정, 전기및전자공학부 이시목 박사과정 >

 

차세대 웨어러블 및 임플란터블 기기, 의료기기, 로보틱스 등 다양한 분야에 활용될 체온에 따라 부드럽게 변할 수 있는 전자잉크를 최초로 개발하였다.

전기및전자공학부 정재웅 교수 연구팀이 신소재공학과 스티브박 교수 연구팀과 공동연구를 통해 작은 노즐을 통한 직접 잉크 쓰기 방식으로 고해상도 프린팅이 가능하고 체온에 의해 부드러워져 인체 친화적 바이오 전자소자 구현을 가능하게 하는 액체금속 기반 전자잉크를 최초로 개발했다고 6일 밝혔다. 

images 000074 photo2 1

< 전자잉크의 제작과정 및 3D 직접쓰기 프린팅 기법 >

 

최근 웨어러블 및 임플란터블 생체 소자와 소프트 로보틱스 분야에서는 부드러운 사람 피부나 조직에 적용돼 건강 상태를 모니터링하고 질환을 치료하는 기술이 활발히 연구되고 있다. 기존 의료기기 예를 들어보면,  딱딱한 형태의 의료기기인 경우 부드러운 피부와의 강성도 차이로 인해 피부 부착 시 불편함을 야기하거나 조직 삽입 시 염증 반응을 유발할 수 있다. 

반면, 피부처럼 부드러운 유연한 의료기기는 피부나 조직에 적용 시 우리 몸의 일부처럼 이질감 없이 사용될 수 있지만, 부드러운 특성으로 인해 정교한 핸들링을 어렵게 한다. 

 

images 000074 photo3

< 제안된 갈륨 기반 전자잉크 >

 

연구팀은 이러한 고정된 강성을 갖는 기존 바이오 전자기기의 한계를 극복하기 위해, 상온에서는 단단하여 손쉬운 핸들링으로 인체 적용을 용이하게 하고, 피부 부착 또는 조직 내 이식 후에는 체온에 의해 부드럽게 변하여 조직의 일부처럼 함께 움직일 수 있는 전자 회로 제작을 가능하게 하는, 고해상도 패터닝이 가능한 액체금속 갈륨 기반 전자잉크를 개발했다.

 

images 000074 photo4

< 양방향성 가변강성을 가진 광혈류 전자센서 >

 

이 전자 잉크의 핵심 소재인 갈륨은 금속임에도 불구하고 미온(29.76 ℃)에서 녹는 점을 가져 쉽게 고체와 액체 간의 상태 변화가 가능하고 뛰어난 전기전도성과 무독성을 가진다. 연구팀은 또한 기존 갈륨의 높은 표면장력과 낮은 점도 문제를 해결함으로써, 고해상도 프린팅이 가능한 전자잉크를 구현했다. 

개발된 잉크는 상용회로도선 정도의 딱딱한 상태와 피부조직처럼 부드러운 상태 간의 뛰어난 가변 강성률, 빠른 강성 변화, 높은 열전도율, 그리고 우수한 전기전도성을 가진다. 이 전자잉크는 3D 프린팅을 활용해 사용자 맞춤형 전자소자 제작도 가능하게 한다. 

 

images 000074 photo5

< 가변강성 무선광전자장치 >

 

연구팀은 이 기술을 통해 초박막 광 혈류측정 전자 피부센서와 무선 광전자 임플란트 장치를 제작했다. 이 기기들은 상온(25℃)에서는 딱딱하여 다루기 쉬운 반면, 체온(~36.7℃)에 노출되면 부드럽게 변환돼 피부나 조직에 적용 시 기계적 스트레스를 주지 않고 조직 변형에 순응하며 안정적으로 동작하는 게 가능하다. 사용 후 인체에서 제거 시 다시 딱딱한 형태로 변형될 수 있어 재사용을 용이하게 한다. 위와 같은 특성은 다양한 웨어러블 및 임플란터블 장치에 폭넓게 활용될 수 있을 것으로 기대된다.

정재웅 교수는 “체온에 반응해 강성을 변환할 수 있고 고해상도 프린팅이 가능한 전자잉크는 기계적 특성 변환을 필요로 하는 다목적 전자기기, 센서, 로봇 기술뿐만 아니라 의료 기기 분야에서 고정된 형태를 갖는 기존 전자기기의 한계를 극복해 다양한 새로운 가능성을 열 수 있을 것ˮ이라고 말했다.

신소재공학부 권도아 학사과정과 전기및전자공학부 이시목 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)’에 2월 28일 字에 게재됐다. (논문명 : Body-temperature Softening Electronic Ink for Additive Manufacturing of Transformative Bioelectronics via Direct Writing) 

 

images 000074 photo6

< 연구내용 대표 이미지 >

 

한편 이번 연구는 과학기술정보통신부에서 추진하는 한국연구재단 전자약 기술개발사업, 기초연구실 지원사업, 중견연구자 지원사업, 한국전자통신연구원 개방형융합선행연구의 지원을 받아 수행됐다.

해킹 공격 막는 암호 반도체 최초 개발​

images 000074 photo1.jpg 3

< (왼쪽부터) 전기및전자공학부 최양규 교수, 류승탁 교수, 김승일 박사과정 >

 

사물인터넷(IoT), 자율 주행 등 5G/6G 시대 소자 또는 기기 간의 상호 정보 교환이 급증함에 따라 해킹 공격이 고도화되고 있다. 이에 따라, 기기에서 데이터를 안전하게 전송하기 위해서는 보안 기능 강화가 필수적이다. 

우리 대학 전기및전자공학부 최양규 교수와 류승탁 교수 공동연구팀이 ‘해킹 막는 세계 최초 보안용 암호 반도체’를 개발하는 데 성공했다고 29일 밝혔다. 

 

연구팀은 100% 실리콘 호환 공정으로 제작된 핀펫(FinFET) 기반 보안용 암호반도체 크립토그래픽 트랜지스터(cryptographic transistor, 이하 크립토리스터(cryptoristor))를 세계 최초로 개발했다. 이는 트랜지스터 하나로 이루어진 독창적 구조를 갖고 있을 뿐만 아니라, 동작 방식 또한 독특해 유일무이한 특성을 구비한 난수발생기다. 

 

인공지능 등의 모든 보안 환경에서 가장 중요한 요소는 난수발생기이다. 가장 널리 사용되는 보안 칩인 ‘고급 암호화 표준(advanced encryption standard, AES)’에서 난수발생기는 핵심 요소로, AES 보안 칩 전체 면적의 약 75%, 에너지 소모의 85% 이상을 차지한다. 따라서, 모바일 혹은 사물인터넷(IoT)에 탑재가 가능한 저전력/초소형 난수발생기 개발이 시급하다. 

기존의 난수발생기는 전력 소모가 매우 크고 실리콘 CMOS 공정과의 호환성이 떨어진다는 단점이 있고, 회로 기반의 난수발생기들은 점유 면적이 매우 크다는 단점이 있다. 

 

연구팀은 기존 세계 최고 수준 연구 대비 전력 소모와 점유 면적 모두 수천 배 이상 작은 암호 반도체인 단일 소자 기반의 크립토리스터(cryptoristor)를 개발했다. 절연층이 실리콘 하부에 형성되어 있는 실리콘 온 인슐레이터(Silicon-on-Insulator, SOI) 기판 위에 제작된 핀펫(FinFET)이 가지는 내재적인 전위 불안정성을 이용해 무작위적으로 0과 1을 예측 불가능하게 내보내는 난수발생기를 개발했다.

 

 

images 000074 image1.jpg 4

IMG 0102
[유회준 교수 연구팀, 뉴로모픽 컴퓨팅 기반의 초저전력 거대 언어 모델 인공지능반도체 핵심기술 ‘상보형-트랜스포머’ 개발]
 
IMG 0102
<유회준 교수 사진>
 
우리 학부 유회준 교수 연구팀이 전력 소모를 최소화하면서도 초고속으로 거대언어모델(LLM)을 처리할 수 있는 인공지능(AI) 반도체 핵심 기술인 ‘상보형 트랜스포머'(Complementary-Transformer)를 세계 최초로 개발했다. 상보형 트랜스포머란 인간 뇌의 구조와 기능을 모방해 설계한 뉴로모픽 컴퓨팅 시스템의 일종인 ‘스파이킹 뉴럴 네트워크'(SNN·뇌의 뉴런이 스파이크라는 시간에 따른 신호를 사용해 정보를 처리하는 방식)와 ‘심층 인공신경망'(DNN·시각적 데이터 처리에 사용되는 딥러닝 모델)을 선택적으로 사용해 트랜스포머 기능을 구현하는 기술이다. 트랜스포머는 문장 속 단어와 같은 데이터 내부의 관계를 추적해 맥락과 의미를 학습하는 신경망으로 챗GPT의 원천 기술이기도 하다.
 
GPT와 같은 거대언어모델은 그동안 다량의 그래픽처리장치(GPU)와 250와트의 전력 소모를 통해 구동해야 했지만, 연구팀은4.5㎜×4.5㎜의 작은 AI 반도체 한 개에서 400밀리와트의
초저전략만 소모하면서도 초고속 구현에 성공하였다. 기본 뉴로모픽 컴퓨팅 기술은 합성곱신경망(CNN·심층인공신경망의 하나로 이미지 인식·분류와 비디오 분석 등 시각적 데이터 처리에 사용되는 딥러닝 모델)보다 부정확해 간단한 이미지 분류 작업만 할 수 있었으나, 연구진은 뉴로모픽 컴퓨팅 기술의 정확도를 CNN과 동일한 수준으로 끌어올리고 다양한 응용 분야에 적용할 수 있는 ‘상보형 심층신경망’ (C-DNN) 기술을 활용했다고 설명했다. 
 
스파이킹 뉴럴 네트워크와 심층 인공신경망의 상보적 특성
<스파이킹 뉴럴 네트워크와 심층 인공신경망의 상보적 특성>
 
사람의 뇌처럼 데이터 입력값이 크면 전력을 많이 쓰고 작으면 전력을 적게 쓰는 SNN의 특징을 활용해 작은 입력값은 SNN에, 큰 입력값은 DNN에 각각 할당하는 방식이다.연구팀은 이러한 상보형 심층신경망 기술을 거대언어모델에 적용함으로써 초저전력·고성능의 온디바이스 AI가 가능하다는 것을 실제로 입증한 것은 물론, 이론에만 머물렀던 연구 내용을 세계 최초로 AI반도체 형태로 구현했다고 과기정통부는 설명했다. 이번에 개발한 AI반도체용 하드웨어 유닛은 ▲ DNN과 SNN을 융합한 신경망 아키텍처로 정확도를 유지하면서도 연산 에너지 소모량을 최적화 ▲ DNN과 SNN을 모두 효율적으로 처리할 수 있는 AI반도체용 통합 코어 구조 개발 ▲ SNN 처리에 소모되는 전력을 줄이는 출력 스파이크 추측 유닛 개발 ▲ LLM 파라미터의 효과적 압축을 위한 기법 사용 등 4가지 특징을 지닌다고 연구진은 밝혔다. 
 
이를 통해 GPT-2 거대모델의 파라미터를 7억800만 개에서 1억9천100만 개로, 번역에 사용되는 T5 모델의 파라미터를 4억200만 개에서 7천600만 개로 각각 줄일 수 있었다. 이러한 압축 작업 결과 언어모델의 파라미터를 외부 메모리로부터 불러오는 작업에 소모되는 전력을 70% 줄이는 데 성공했다. 연구진에 따르면 상보형 트랜스포머는 엔비디아 A100 GPU 대비 625분의 1 수준의 전력을 쓰면서 GPT-2 모델을 활용한 언어 생성에는 0.4초, T5 모델을 활용한 언어 번역에는 0.2초의 고속 동작이 각각 가능하다.파라미터 경량화로 언어 생성의 경우 1.2분기계수(낮을수록 언어모델이 잘 학습됐다는 의미)만큼 정확도가 감소하긴 했으나, 생성된 문장을 사람이 읽을 때 어색함을 느끼지 않을 수준이라고 연구진은 설명했다. 연구팀은 향후 뉴로모픽 컴퓨팅을 언어모델에 국한하지 않고 다양한 응용 분야로 연구 범위를 확장할 예정이다.
 
유회준 교수는 “뉴로모픽 컴퓨팅은 IBM, 인텔 같은 회사들도 구현하지 못한 기술로, 초저전력의 뉴로모픽 가속기를 갖고 거대모델을 돌린 것은 세계 최초라고 자부한다”며 “온디바이스 AI의 핵심 기술인 만큼 앞으로도 관련 연구를 지속할 것”이라고 말했다.
AI 반도체 발전 방향
<AI 반도체 발전 방향>
[과학기술정보통신부 보도자료 링크]
 
[연합뉴스 링크]
IMG 0100

[유민수 교수팀, 국제 최우수 컴퓨터 아키텍쳐 학술대회 HPCA 최우수 논문상 (Best Paper Award) 수상]

IMG 0100
<(왼쪽부터) 최우수 논문 상장 사진, 수상식 사진, 현봉준 박사과정 사진(제1저자), 김태훈 박사과정 사진, 이동재 박사과정 사진>
 
 
전기및전자공학부 유민수 교수가 이끄는 연구팀이 국제 최우수 컴퓨터 아키텍처 학술대회 중의 하나인 ‘IEEE 국제 고성능 컴퓨터 구조 학회(IEEE International Symposium on High-Performance Computer Architecture, HPCA)’에서 최우수논문상(Best Paper Award)을 수상했다고 발표했다. 이는 국내 대학 연구진이 컴퓨터 구조분야 국제 최우수 학술대회에서 최우수논문상을 수상한 첫 번째 사례이며, 제출된 논문 410편 중에서 상위 1편에게만 주어진 영예이다.
 
전기및전자공학부 현봉준 박사과정(제1저자), 김태훈 박사과정, 이동재 박사과정으로 구성된 유민수 교수 연구팀은 UPMEM社의 상용화된 프로세싱-인-메모리(Processing-In-Memory, PIM) 기술을 기반으로 한 uPIMulator라는 시뮬레이션 프레임워크를 제안하여 최우수논문상을 수상했다.

논문: https://arxiv.org/abs/2308.00846

uPIMulator: https://github.com/VIA-Research/uPIMulator

 
 

이영달 박사(문건우교수연구실), 전남대학교 AI융합대학 지능형모빌리티융합학과 전임교원 임용

 

박사 사진

 

KAIST 전기및전자공학부 KAIST Power Electronics Lab. (KPEL) 졸업생 이영달 박사(지도교수: 문건우)가 2024년 3월 1일부로 전남대학교 AI융합대학 지능형모빌리티융합학과의 전임교원으로 임용되었습니다.

이영달 박사는 2022년 2월 KAIST 박사학위를 취득하고, KAIST 스핀오프 회사인 와이파워원(Wipowerone)에서 3년 동안 근무하였습니다.

와이파워원에서 이영달 박사는 프로젝트 리더로서 미래 신산업 분야로 주목을 받고 있는 전기자동차용 무선충전시스템에 대한 연구개발을 수행하고, 이를 Tesla 전기자동차에 탑재하여 실증화를 성공적으로 수행하였습니다.

이외 주요 경력으로 이영달 박사는 삼성전기 Power R&D 그룹에서 선임연구원으로 4년 동안 전력전자 회로 연구개발과 상품화에도 힘썼습니다.

주요 연구분야는 전력전자공학 분야로, IEEE TPE 등 국제저명학술지에 다수의 논문을 발표하였고, 연구의 우수성을 다수의 우수논문상 수상을 통해 인정받았습니다.

향후, 이영달 박사는 전기자동차와 UAM(도심형항공모빌리티)을 포함한 미래모빌리티용 전력 인프라의 개발을 통해 탄소중립 달성에 힘쓸 예정입니다.
많은 축하와 격려 부탁드립니다.

공지사항

MORE

학부일정

세미나

날짜:

1.15(월), 10시 30분~

연사:

박현주 대표(인포웍스)

장소:

E3-2 우리별세미나실

[전기및전자공학부
전임교원 채용]

[2024 Fall Regular Track]
Global EPSS Program
Application Guide