News & Event​

Engineering Nanophotonic Interfaces to Control Plasmons and Spins

Subject

Engineering Nanophotonic Interfaces to Control Plasmons and Spins

Date

PM 03:00 Nov 7th

Speaker

Laura Kim(UCLA)

Place

E3-2,Room#2203

Overview:

Speaker: Laura Kim(UCLA)

Title: Engineering Nanophotonic Interfaces to Control Plasmons and Spins

Date/Place: PM 03:00  Nov 7th /E3-2,Room#2203

 

Abstract:

Light-matter interactions mediated by photonic quasiparticles play a crucial role in realizing next-generation photonic devices by unlocking phenomena that are not accessible with free-space photons and providing efficient interfaces for quantum systems. In the first part of the presentation, I will present the first experimental demonstration of a mid-infrared light-emitting mechanism originating from an ultrafast coupling of optically excited carriers into hot plasmon excitations in graphene. Such excitations show gate-tunable, non-Planckian emission characteristics due to the atom-level confinement of the electromagnetic states. These findings for plasmon emission in photo-inverted graphene open a new path for the exploration of mid-infrared emission processes, and this mechanism can potentially be exploited for both far-field and near-field applications for strong optical field generation. In the second part of the presentation, I will present a diamond resonant metasurface that can mediate efficient spin-photon interactions and enable a new type of quantum imaging system. This quantum metasurface containing nitrogen-vacancy (NV) spin ensembles coherently encodes information about the local magnetic field on spin-dependent phase and amplitude changes of near-telecom light. The projected performance makes the studied quantum imaging metasurface appealing for the most demanding applications such as imaging through scattering tissues and spatially resolved chemical NMR detection.

Biography:

Laura Kim is an assistant professor in the Department of Materials Science and Engineering at UCLA. Prior to joining UCLA, she completed her IC Postdoctoral Fellowship in the Quantum Photonics Laboratory at the Massachusetts Institute of Technology. She received her B.S. and Ph.D. degrees from the California Institute of Technology. She was named a 2020 EECS Rising Star and a recipient of the IC Postdoctoral Fellowship, Gary Malouf Foundation Award, and National Science Foundation Graduate Research Fellowship. She serves on the Early Career Editorial Advisory Board of Applied Physics Letters. Her current research interests include enhancing photonic-quasiparticle-driven light-matter interactions and developing nanoscale quantum sensing technologies.

 

Profile: