<(좌측부터) 윤찬현 교수, 조규상 박사과정 사진>
전기및전자공학부 윤찬현 교수 연구팀은 신경망의 신뢰도 향상을 위한 네트워크 보정 알고리즘 “Tilt and Average ; TNA” 를 개발하는데 성공하였다. TNA 기법은 기존의 보정 지도를 기반으로하는 접근 방식과는 다른 방식으로, 분류기의 마지막 층의 가중치를 변환하는 알고리즘으로, 기존의 기법과 매끄럽게 통합될 수 있다는데에 큰 장점을 보이며, 해당 연구는 인공지능 신뢰성 증진 연구에서 탁월한 기술로 평가받고 있다.
그림 1 : 제안된 기법 (TNA; Tilt And Average) 알고리즘의 가중치 조정 방식
해당 기술은 기존 인공 신경망이 가지고 있던 overconfident prediction 문제를 해결하기 위한 새로운 알고리즘을 제안한다. 마지막 선형 층의 고차원 기하학을 활용하는 해당 알고리즘은, 가중치의 행 벡터간 각도적 측면에 집중하여 방향을 조정(Tilt)하고 평균치를 계산(Average)하는 메커니즘을 제안하였다.
연구팀은 제안된 방법을 통해 보정에러를 최대 20%까지 줄일 수 있음을 확인하였으며, 해당 알고리즘은 기존의 보정 지도 기반 기술과 통합될 수 있다는 점에 장점을 가진다. 해당 연구 결과는 올해 7월 오스트리아 비엔나에서 열리는 인공지능 분야 최우수 국제 학회 중 하나인 ICML (International Confernce on Machine Learning, https://icml.cc)에서 발표될 예정이다. 올해로 41회째를 맞은 ICML은 머신 러닝 분야에서 오랜 역사와 최고의 권위를 가지고 있는 국제 학술대회로, CVPR, ICLR, NeurIPs 등의 학술대회와 함께 해당 분야 최고 수준의 국제 학회로 손꼽히고 있다.
한편, 이번 연구는 해양경찰청 의 지원과(RS-2023-00238652) 방위사업청(DAPA) 의 지원 (KRIT-CT-23-020)을 받아 수행됐으며, 해당 논문은 Gyusang Cho and Chan-Hyun Youn, “Tilt and Average : Geometric Adjustment of the Last Layer for Recalibration” , ICML (2024) 로 찾아볼 수 있다.