소식

NEWS & EVENTS

세미나

소식

NEWS & EVENTS

세미나

세미나

(7월 25일) 1.3 um quantum dot laser for silicon

제목

1.3 um quantum dot laser for silicon

날짜

2018.07.25 (수) 16:30-

연사

정대환 박사님 (Institute for Energy Efficiency, University of California Santa Barbara)

장소

정보전자동 (E3-2) 2216호

개요:

Silicon photonics has been intensively studied for future optical interconnects, telecom, datacom, and various sensor applications. While many high-performance passive components, such as waveguides, resonators, and detectors have been demonstrated, efficient and reliable light sources monolithically integrated on silicon remain challenging. III/V quantum dot (QD) lasers were initially studied for telecom applications due to their unique properties that can potentially enable very low threshold, temperature-insensitive, low reflection-sensitive and ultra-small foot-print lasers. Recently, we have witnessed that InAs/GaAs QD lasers can be grown on silicon by epitaxy while maintaining their superior performance. Advantages of QD over quantum well lasers on silicon are a longer lifetime, lower reflection sensitivity and smaller linewidth enhancement factor. Here, we present recent achievements in performance and reliability of the QD lasers epitaxially grown on silicon. Fabry-Perot QD lasers show a CW threshold current of 4.8 mA, linewidth enhancement factor of 0.1, extrapolated laser lifetimes of more than 10 million hours at 35 °C, and direct modulation up to 12 Gbps. We also show ultra-small microring QD lasers with a CW threshold of 0.5 mA and single-section mode-locked lasers with a 490 fs pulse width and 31 GHz repetition rate.