Title: ARCHON: A 332.7TOPS/W 5b Variation-Tolerant Analog CNN Processor Featuring Analog Neuronal Computation Unit and Analog Memory
Abstract: In this paper, we present a fully analog CNN processor featuring convolution, pooling, and non-linearity (RELU) datapath fully (end-to-end) in the analog domain, with no analog-to-digital conversion between layers. The processor adopts a variation-tolerant analog design approach, including analog memory with a write-with-feedback scheme that allows the fully analog processor to be robust to PVT variations. The 28nm chip achieves a peak efficiency of 332.7TOPS/W for 5b equivalent precision.