In this course, we will discover microelectromechanical systems (MEMS) in electrical engineering perspective, touching a complete set of design, fabrication, and applications. With respect to designing MEMS, we will explore various working principles, CAD tools including semiconductor design tools, and signal processing circuits. Also, core semiconductor processing technologies and a wide range of micro-machining techniques are studied in depth, in order to fabricate MEMS. We will address important issues in major fields of MEMS applications, including microsensors, RF/microwave, optical, and bio / microfluidic MEMS, especially in an electrical engineering viewpoint.
This course will teach students the fundamental principles and concepts for an electric power system with an emphasis on renewable energy technologies that are important from the perspectives of electrical engineering.
Recommend
This course is an introduction to continuous-time and discrete-time signals and systems. The course covers Fourier series, Fourier transform, Laplace transform, and z-transform. Various types of systems with emphasis on linear time invariant system is studied.
Recommend
This course covers introductory electromagnetic fields and waves. Static electric fields and static magnetic fields are discussed. Time-varying fields and Maxwell’s equations are introduced. Waves and transmission lines are studied.
Recommend
This course covers data structures, algorithms, JAVA for electron electronics engineering. We study object-oriented programming techniques and use programming language C, JAVA.
Recommend
Experiments related to electronics are performed. Focus is made for both hands-on experience and design practice. (Prerequisite: EE201, EE304)
Recommend
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical
Engineering. All rights reserved.
Made by PRESSCAT