This course is designed to introduce several medical image systems and related applications based on various image processing techniques. Topics include image reconstruction algorithms, X-ray CT, single photon emission CT, positron emission tomography, magnetic resonance imaging, ultrasound imaging, and related post-processing techniques.
This course handles underlying background theories for pattern recognition (PR) which is the start point for AI. It covers PR systems, Bayesian Classifier, likelihood-based PR, Discriminant Function-based PR, Support Vector Machine, NN-based PR, and other PR theories such as fuzzy theory, and so on.
Prerequisite
The primary objective of this course is to discuss what NeuroImaging methods are available to study the brain. The focus of the course will be on modern tools capable of whole-brain imaging (mostly MRI), but we will also discuss non-MRI techniques as well. As part of the term project, students will be asked to propose novel acquisition and/or analysis method that is likely to facilitate our ability to understand the brain.
Prerequisite
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical
Engineering. All rights reserved.
Made by PRESSCAT