This course introduces selected topics of recent technologies and algorithm related to image processing and imaging systems. (Prerequisite: EE432, EE535)
This course will explore the principles, models, and applications of computer vision. The course consists of five parts: image formations and image models; generic features, such as edges and corners, from images; the multiple view analysis to recover three-dimensional structure from images; segmentation of images and tracking; the object recognition methodologies. (Prerequisite: EE535)
This course is designed to introduce several medical image systems and related applications based on various image processing techniques. Topics include image reconstruction algorithms, X-ray CT, single photon emission CT, positron emission tomography, magnetic resonance imaging, ultrasound imaging, and related post-processing techniques.
Prerequisite
The goal of this course is to provide the theoretical and technical basis required to design and implement speech recognition algorithms or systems. The topics include acoustic-phonetic characterization, speech processing techniques for speech recognition, pattern comparison techniques, theory and implementation of HMMs, searching techniques for continuous speech recognition, and other related implementation issues. (Prerequisite: EE432)
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical
Engineering. All rights reserved.
Made by PRESSCAT