This course covers topics of interest in power electronics for students at the graduate level. Course content is specifically designed by the instructor.
This course deals with system identification to know the unknown system parameters for controlling the system. There are two schemes for the control of the unknown system: one is direct adaptive control and the other is indirect adaptive control. Robust adaptive control and adaptive control for nonlinear systems are dealt with.
(Prerequisite: EE581)
This course introduces variable structure control (VSC) theory which is one of the robust control theories. Various basic theorems of VSC will be analyzed in the sliding mode. Expanding the target plant from a second order plant to the n-th order plant, it will be studied how to determine switching conditions and switching vectors. Stability will be analyzed by designing a feedback control loop. By integrating multi-variable structure with optimal control theory and adaptive control theory, the problem of system optimization and the problem of determining coefficients of switching vector in sliding mode will be resolved. Based on those theories, discrete variable structure control (DVSC) will be introduced. Finally, it will be studied how to apply those theories to the control system in robot systems, space aerial planes, satellites, chemical plants, power plants and motors.
This course deals with sensor fusion, decision making and information procession on real time for intelligent robots. To have a higher level of cognition, advanced level of problem-solving methods are presented for task planning, scheduling and navigation planning.
(Prerequisite: EE682, EE683)
This course covers the practical design and analysis of various DC / DC converters in the power conversion system. High-frequency transformer, inductor, Magnetic Amplifier, Snubber, and Feedback Stabilization is studied to give students deep insight into power conversion system. Also, the power factor correction circuit is introduced as an AC / DC converter. Every student carries out the term project about design and modeling of a DC / DC converter. On completion of this course, students will have confidence in their ability of design and analysis of power conversion system.
(Prerequisites: EE391, EE594)
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical
Engineering. All rights reserved.
Made by PRESSCAT