교육

ACADEMIC

대학원과정

전자기 특강

과목코드
주요연구
학점
과목구분
선수과목
EE.89909(005)
3
선택(석/박사)

이 과목에서는 딥 뉴럴 네트워크(Deep Neural Network), 컨볼루션 뉴럴 네트워크(Convolution Neural Network), 순환 뉴럴 네트워크(Recurrent Neural Network), 강화 학습(Reinforcement Learning)을 포함한 머신러닝 알고리즘의 기초 개념을 소개한다. 특히 강화 학습의 기본 원리와 핵심 응용 분야에 대해 학습하고 토의한다. 또한 GPU, HBM, AI 칩 등 AI 가속기 컴퓨팅 구조에 대해서도 다룬다. 마지막으로, 이러한 강화 학습 기법을 안테나, 회로, 소자, 반도체 등 전자기 시스템의 추정, 설계 및 최적화에 적용한다.

권장과목