신경회로망의 이론과 응용에 대하여 강의한다. 특히 신경회로망의 구조와 기능 그리고 학습과 일반화에 대하여 설명하고 다양한 신경회로망 모델에 대하여 알아본다. 신경회로망의 여러 가지 응용을 설명한다.
선수 과목 ‘EE210 확률과 기초 확률과정’에서 배운 기초적인 내용을 바탕으로, 확률과 확률과정을 좀더 높은 수준에서 다룬다. 다루는 주요 내용에는 집합의 대수, 극한 사건, 확률벡터, 수렴, 상관함수, 독립증분 과정, 복합과정이 들어있다.
신호처리 분야에서 필요로 하는 행렬 계산 기법들을 다룬다. 선형 시스템 풀이 방법, 행렬의 norm, 실수 표현 방법, positive definite 행렬, Toeplitz 행렬, 행렬의 직교/대각화, 고유치 및 고유 벡터 계산, 특이값 분해 기법, 그리고 선형 시스템의 반복적인 풀이 방법들이다.
이 과목은 학생들에게 최근 머신 러닝 기술과 알고리즘들을 소개하고, 기초적인 개념과 직관력을 심어주는 것을 목적으로 한다. 강의에서 다룰 내용은 perceptron과 같은 고전적 개념에서부터 boosting, support vector machine, graphical model 등 최신 개념까지 포괄한다. 이 강의에서 소개될 대부분의 알고리즘은 통계적 추론을 기반으로 한다.
타학과 선수과목 : CS101 프로그래밍기초
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical
Engineering. All rights reserved.
Made by PRESSCAT