전기및전자공학부 심현철 교수팀, 세계 최대 자율드론 챔피언쉽 대회 세계 3위 쾌거

우리 학부 심현철 교수 연구팀이 2025년 4월 12일 아랍에미리트(UAE) 정부 후원으로 개최된 아부다비 자율 레이싱 대회(Abu Dhabi Autonomous Racing League, 이하 A2RL)의 드론 챔피언십 리그( Drone Championship League, 이하 DCL)에서 세계 3위를 차지했다.

 

아부다비 국립 전시 센터 마리나(ADNEC Marina) 대회장에서 개최된 본 선 대회에서는 2024년 가을 예선을 통해 선발된 14개 팀들이 참가해 실력을 겨뤘다. 참가팀들은 ▲최단 비행시간 경연(AI Grand Challenge), ▲4대동시 자율비행, ▲양쪽에서 마주 보면서 고속으로 비행하는 드래그 레이싱, ▲AI 대 인간 조종사 대결 등 총 4개 부문에서 경합을 벌였다.

 

그 중 8개 팀이 최단 비행시간 경연 준결승에 진출했고, 이 중 KAIST는 네덜란드 델프트공대(TU Delft), UAE 기술혁신연구소(TII), 체코 공과대학(Czech Technical University, CTU)와 함께 결승에 올랐다.

 

결승에서는 델프트 공대가 1위를 차지했으며, UAE 기술혁신연구소가 2위, 우리 학부 심현철 교수 연구팀은 그 뒤를 이어 세계 종합 3위의 성과를 거두었다.

 

또한, 심현철 교수팀은 세계 최초로 개최된 자율비행 드론의 동시 자율비행에서 2위를, 양쪽에서 동시에 마주 보며 출발하는 드래그 레이싱(drag racing)에서도 2위를 차지하며 뛰어난 성과를 거두었다.

 

IMG 9847 tile

심 교수팀은 팀장인 한동훈 박사과정을 비롯해 마울라나 아자리(Maulana Azhari) 박사과정, 유제인 석사과정, 박성준 석사과정 등 총 4명으로 구성되어 있으며, 자체 개발한 영상기반 측위 기술과 고기동 비행 제어 기술을 바탕으로 우수한 기량을 선보여 총 10만 5천달러의 상금을 수상하게 되었다.

 

이번 대회는 외부 카메라나 라이다(LiDAR) 없이 단안 카메라만을 활용하여 자율 비행 드론에 적용한 최초의 국제 대회로, 총 12개의 게이트가 설치된 실내 경연장에서 진행되었다. 상금 총액은 100만 달러에 달하며, 드론 기술의 미래를 선도하는 경쟁의 장이 되었다.

 

A2RL DCL 자율비행 대회는 2017년 세계적인 로봇 기술 경연대회인 MBZIRC(Mohamed Bin Zayed International Robotics Competition) 이후 UAE 정부 지원으로 개최된 5번째 대규모 로보틱스 경진대회이다.

 

특히 이번 대회와 같은 카메라 기반 자율비행 드론 레이싱은 단순한 E-sports를 넘어서 현대전에 게임 체인저로 등장한 1인칭 시점(FPV) 드론에 직접적으로 적용될 수 있는 중요한 기술로서, 세계적으로 주목받고 있다.

 

심현철 교수는 “코로나로 인한 대회 중단과 연구팀 재편 등 연구 공백과 고속 비행을 제대로 실험할 환경을 구하기 어려운 여건 속에서도, 독자적인 측위 및 제어 기술을 완성해 결국 세계 유수의 연구팀들을 제치고 값진 성과를 거둘 수 있었다”고 밝혔다. 이어 “이번 결과에 만족하지 않고, 더욱더 경쟁력 있는 연구 역량 및 환경을 갖출 수 있다면 앞으로 열릴 국제 대회에서는 압도적인 기술력으로 세계 최고 수준의 성과를 만들어내겠다”고 각오를 전했다.

 

IMG 9878 e1744936286947

 

심 교수는 2016년 세계적인 로봇 학회 IROS에서 세계 최초로 자율드론 레이싱을 개최한 자율 드론 레이싱 분야의 선구자이며, 같은 대회에서 2016년, 2018년 각각 우승 및 준우승을 차지했다.

 

또한, 2019년 미국 록히드 마틴(Lockheed Martin)사가 주최한 AlphaPilot 자율 드론 AI 경진대회에서는 3위를, 2019년, 2020년 과기정통부가 개최한 AI 그랜드 챌린지 드론 실내비행 부분에서 2회 연속 우승을 거두며 총 24억원의 후속 연구비를 지원받는 등 꾸준히 우수한 성과를 거두었다.

 

더불어 2024년 해양 환경에서 자율 로봇(무인 보트, 드론 등)의 기술 능력을 겨루는 국제 대회인 MBZIRC 해양 챌린지(Maritime Challenge)에서 KAIST 기계공학부 김진환 교수팀과 공동으로 참여하여 2등을 차지한 바 있다. 

전기및전자공학부 김상현 교수팀, 상온에서 안정적으로 동작하는 중적외선 광검출기 기술 개발

교수님 750
<(왼쪽부터) 김인기 박사과정 (공저자), 김상현 교수 (교신저자), 심준섭 박사 (제1저자), 임진하 박사 (공저자) >

미국 항공우주국(NASA)의 제임스웹 우주망원경(JWST)은 중적외선 스펙트럼을 활용해 외계 행성 대기의 수증기, 이산화황 등 분자 성분을 정밀하게 분석하고 있다. 이처럼 각 분자가 ‘지문’처럼 고유한 패턴을 나타내는 중적외선 분석의 핵심은, 아주 약한 빛의 세기까지 정밀하게 측정할 수 있는 고감도 광검출기 기술이다. 최근 KAIST 연구진이 중적외선 스펙트럼의 넓은 영역을 감지할 수 있는 혁신적 광검출기 기술을 개발하며 주목을 받고 있다. 

 

우리 학부 김상현 교수팀이 상온에서 안정적으로 동작하는 중적외선 광검출기 기술을 개발하고, 이를 통해 초소형 광학 센서 상용화에 새로운 전환점을 마련했다. 

 

이번에 개발된 광검출기는 기존 실리콘(Silicon) 기반 CMOS 공정을 활용해 저비용 대량 생산이 가능하며, 상온에서 안정적으로 동작하는 것이 특징이다. 특히 연구팀은 이 광검출기를 적용한 초소형·초박형 광학 센서를 이용해 이산화탄소(CO2) 가스를 실시간으로 검출하는 데 성공, 환경 모니터링 및 유해가스 분석 등 다양한 응용 가능성을 입증했다. 

 

기존 중적외선 광검출기는 상온에서의 높은 열적 잡음(Thermal noise)으로 인해 일반적으로 냉각 시스템이 요구된다. 이러한 냉각 시스템은 장비의 크기와 비용을 증가시켜, 센서의 소형화 및 휴대용 기기 응용을 어렵게 만든다. 또한, 기존 중적외선 광검출기는 실리콘 기반 CMOS 공정과 호환되지 않아 대량생산이 어렵고 상용화가 제한됐다. 

 

이에 연구팀은 실리콘과 같은 주기율표 4족 원소인 저마늄(Germanium) 반도체를 기반으로 한 광학 플랫폼을 활용해, 넓은 대역의 중적외선 검출 성능을 확보하면서도 동시에 상온에서 안정적으로 동작할 수 있는 새로운 형태의 도파로형(waveguide-integrated) 광검출기를 개발했다.

 

1. 연구팀이 개발한 광검출기 개략도
< 그림 1. 본 연구에서 제안하는 저마늄-온-인슐레이터(Ge-on-insulator) 광학 플랫폼 기반 상온 중적외선 도파로형 광검출기 개략도(위). 센싱부와 함께 집적하여 제작된 소자의 광학 현미경 이미지(아래) >

 

‘도파로’란 빛을 특정한 경로로 손실 없이 효과적으로 유도하는 구조물을 의미한다. 온-칩(on-chip) 상에서 다양한 기능의 광학 회로를 구현하기 위해서는 도파로형 광검출기를 포함해 도파로를 기반으로 하는 광학 소자의 개발이 필수적으로 요구된다.

 

이번 기술은 기존에 광검출기 동작에 일반적으로 활용되는 밴드갭 흡수 원리와는 다르게 볼로미터 효과(Bolometric effect)*를 활용해 중적외선 스펙트럼 영역 전체를 대응할 수 있기 때문에 다양한 종류의 분자들의 실시간 센싱에 범용적으로 활용될 수 있다. *볼로미터 효과(Bolometric effect): 빛을 흡수하면 온도가 올라가고, 그 온도 변화에 따라 전기적인 신호가 달라지는 원리 

 

연구팀이 개발한 상온 동작 및 CMOS 공정 호환 중적외선 도파로형 광검출기는 기존 중적외선 센서 기술이 가진 냉각 필요성, 대량 생산의 어려움, 높은 비용 문제를 해결하는 혁신적인 기술로 평가된다.

 

2. 연구에서 제안하는 광검출기의 광응답 특성 및 가스 센싱 결과
< 그림 2. 본 연구에서 제안하는 중적외선 도파로형 광검출기의 상온 광응답특성(좌) 및 해당 광검출기를 통한 실시간 이산화탄소(CO2) 가스 센싱 결과(우). >

 

이를 통해 환경 모니터링, 의료 진단, 산업 공정 관리, 국방 및 보안, 스마트 디바이스 등 다양한 응용 분야에 적용 가능하며, 차세대 중적외선 센서 기술의 핵심적인 돌파구를 제공할 것으로 기대된다.

 

김상현 교수는 “이번 연구는 기존 중적외선 광검출기 기술의 한계를 극복한 새로운 접근 방식이며, 향후 다양한 응용 분야에서 실용화될 가능성이 매우 크다”고 밝혔다. 또한, “특히 CMOS 공정과 호환되는 센서 기술로, 저비용 대량생산이 가능해 차세대 환경 모니터링 시스템, 스마트 제조 현장 등에서 적극 활용될 것”이라고 덧붙였다.

 

3. 연구팀이 개발한 광검출기의 성능 비교 이미지 e1744786578688
< 그림 3. 본 연구에서 제안하는 기술로 제작된 상온 중적외선 도파로형 광검출기의 성능 비교 이미지. 볼로메트릭 효과(Bolometric effect)를 활용한 기존 기술 대비 세계 최고 성능을 달성하였으며, CMOS 공정 호환이 되는 유일한 솔루션임. 본 연구진이 제안하는 기술의 경우 중적외선 대역 넓은 스펙트럼을 제한 없이 대응할 수 있는 것이 커다란 특징임. >

 

이번 연구 결과는 심준섭 박사(現 하버드대학교 박사후 연구원)가 제1 저자로 참여해 국제 저명 학술지인 ‘빛, 과학과 응용(Light: Science & Applications, JCR 2.9%, IF=20.6)’에 2025년 3월 19일 자 발표됐다. (논문제목: Room-temperature waveguide-integrated photodetector using bolometric effect for mid-infrared spectroscopy applications, https://doi.org/10.1038/s41377-025-01803-3)

 

한편, 해당 연구는 한국연구재단의 지원을 받아 진행됐다.

전기및전자공학부 윤영규 교수, ‘휴먼 프론티어 사이언스 프로그램(HFSP)’ 수상자 선정

750
<윤영규 교수>

우리 학부 윤영규 교수가 ‘휴먼 프론티어 사이언스 프로그램(이하, HFSP)’의 2025년 수상자로 선정되었다. 

 

1990년부터 수상자를 배출해온 휴먼 프론티어 사이언스 프로그램(HFSP) 운영국은 올해 처음 ‘액셀러레이터 트랙’을 신설했으며, 윤영규 교수는 광학적 뇌기능 영상 촬영 및 분석을 주제로 다수의 국제적 협력연구와 선도연구를 수행한 성과를 인정받아 이 트랙의 초대 수상자로 이름을 올리는 영예를 안게 되었다. 

 

향후 2년간 매년 10만 달러를 지원받을 예정이며, ‘조류 신경계 확산광단층촬영 데이터 분석’연구를 주제로 미국 텍사스오스틴 대학교 보테로 교수, 미국 워싱턴 대학교 컬버 교수, 독일 보훔 루르 대학교 군투르쿤 교수와 한 팀을 구성하여 환경적, 진화적 요인이 신경계에 미치는 영향에 관한 연구를 수행할 계획이다. 

 

윤영규 교수는 “뇌과학 기술을 연구하는 전자공학자로서 우수한 생명과학 연구자들에게 주어지는 HFSP 상을 받게 되어 영광이고 뇌과학 기술의 발전에 기여하겠다”고 소감을 밝혔다. 

 

한편, 휴먼프론티어사이언스 프로그램(HFSP)은 생명과학 분야의 세계 최고 권위의 국제 연구 지원 프로그램이다. 이 프로그램을 운영하는 국제기구 휴먼프론티어사이언스프로그램 운영국 (Human Frontier Science Program Organization)은 독창적인 학제 간 융합 국제공동연구를 수행할 역량이 있는 연구자를 선별해 새로운 접근법으로 생명기전을 밝히는 연구를 지원하고자 하는 취지로 1989년 G7국과 유럽연합의 주도로 설립되었으며, 대한민국은 2004년부터 이사국으로 참여하고 있다. 

 

설립 이듬해부터 73개국, 8,500명 이상의 연구자를 지원했으며, 이 중 31명의 노벨상 수상자를 배출해 생명과학 분야의 ‘노벨상 펀드’로 불리기도 한다. 국내에서는 1990이후로 윤영규 교수를 포함해 지금까지 총 17명의 연구자가 지원을 받았다. 

전기및전자공학부 유민수 교수팀, 챗GPT 등 대형 AI모델 학습 최적화 시뮬레이션 개발​

교수님 900 enhancer
< (왼쪽부터) 전기및전자공학부 유민수 교수, 방제현 박사과정, 최유정 박사 >

최근 챗GPT, 딥시크(DeepSeek) 등 초거대 인공지능(AI) 모델이 다양한 분야에서 활용되며 주목받고 있다. 이러한 대형 언어 모델은 수만 개의 데이터센터용 GPU를 갖춘 대규모 분산 시스템에서 학습되는데, GPT-4의 경우 모델을 학습하는 데 소모되는 비용은 약 1,400억 원에 육박하는 것으로 추산된다. 한국 연구진이 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 최적의 병렬화 구성을 도출하도록 돕는 기술을 개발했다.

 

우리 학부 유민수 교수 연구팀은 삼성전자 삼성종합기술원과 공동연구를 통해, 대규모 분산 시스템에서 대형 언어 모델(LLM)의 학습 시간을 예측하고 최적화할 수 있는 시뮬레이션 프레임워크(이하 vTrain)를 개발했다.

 

대형 언어 모델 학습 효율을 높이려면 최적의 분산 학습 전략을 찾는 것이 필수적이다. 그러나 가능한 전략의 경우의 수가 방대할 뿐 아니라 실제 환경에서 각 전략의 성능을 테스트하는 데는 막대한 비용과 시간이 들어간다.

 

이에 따라 현재 대형 언어 모델을 학습하는 기업들은 일부 경험적으로 검증된 소수의 전략만을 사용하고 있다. 이는 GPU 활용의 비효율성과 불필요한 비용 증가를 초래하지만, 대규모 시스템을 위한 시뮬레이션 기술이 부족해 기업들이 문제를 효과적으로 해결하지 못하고 있는 상황이다.

 

이에 유민수 교수 연구팀은 vTrain을 개발해 대형 언어 모델의 학습 시간을 정확히 예측하고, 다양한 분산 병렬화 전략을 빠르게 탐색할 수 있도록 했다.

 

연구팀은 실제 다중 GPU 환경에서 다양한 대형 언어 모델 학습 시간 실측값과 vTrain의 예측값을 비교한 결과, 단일 노드에서 평균 절대 오차(MAPE) 8.37%, 다중 노드에서 14.73%의 정확도로 학습 시간을 예측할 수 있음을 검증했다.

 

1. vTrain 시뮬레이터 구조 모식도
< 그림 1. vTrain 시뮬레이터 구조 모식도 >

 

연구팀은 삼성전자 삼성종합기술원와 공동연구를 진행하여 vTrain 프레임워크와 1,500개 이상의 실제 학습 시간 측정 데이터를 오픈소스로 공개(https://github.com/VIA-Research/vTrain)하여 AI 연구자와 기업이 이를 자유롭게 활용할 수 있도록 했다.

 

2. 단일 노드 시스템좌 및 다중 노드 시스템우에 대한 학습 시간 측정값과 예측값의 비교
< 그림 2. 단일 노드 시스템(좌) 및 다중 노드 시스템(우)에 대한 학습 시간 측정값과 예측값의 비교 >

 

유민수 교수는 “vTrain은 프로파일링 기반 시뮬레이션 기법으로 기존 경험적 방식 대비 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 학습 전략을 탐색하였으며 오픈소스를 공개하였다. 이를 통해 기업들은 초거대 인공지능 모델 학습 비용을 효율적으로 절감할 것이다”라고 말했다.

 

3. 다양한 병렬화 기법에 따른 MT NLG 학습 시간 및 GPU 사용률 변화
< 그림 3. 다양한 병렬화 기법에 따른 MT-NLG 학습 시간 및 GPU 사용률 변화 >

 

이 연구 결과는 방제현 박사과정이 제1 저자로 참여하였고 컴퓨터 아키텍처 분야의 최우수 학술대회 중 하나인 미국 전기전자공학회(IEEE)·전산공학회(ACM) 공동 마이크로아키텍처 국제 학술대회(MICRO)에서 지난 11월 발표됐다. (논문제목: vTrain: A Simulation Framework for Evaluating Cost-Effective and Compute-Optimal Large Language Model Training, https://doi.org/10.1109/MICRO61859.2024.00021)

 

이번 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단, 정보통신기획평가원, 그리고 삼성전자의 지원을 받아 수행되었으며, 과학기술정보통신부 및 정보통신기획평가원의 SW컴퓨팅산업원천기술개발(SW스타랩) 사업으로 연구개발한 결과물이다.

전기및전자공학부 신승원 교수팀, 챗GPT를 이용한 개인정보 악용 가능성 규명

watermarkRemover upscaler4× e1742457173793
<(왼쪽부터) 김한나 박사과정, 신승원 교수, 송민규 박사과정>

최근 인공지능 기술의 발전으로 챗GPT와 같은 대형 언어 모델(이하 LLM)은 단순한 챗봇을 넘어 자율적인 에이전트로 발전하고 있다. 구글(Google)은 최근 인공지능 기술을 무기나 감시에 활용하지 않겠다는 기존의 약속을 철회해 인공지능 악용 가능성에 대한 논란이 불거진 점을 상기시키며, KAIST 연구진이 LLM 에이전트가 개인정보 수집 및 피싱 공격 등에 활용될 수 있음을 입증했다.

 

우리 학부 신승원 교수, 김재철 AI 대학원 이기민 교수 공동연구팀이 실제 환경에서 LLM이 사이버 공격에 악용될 가능성을 실험적으로 규명했다. 현재 OpenAI, 구글 AI 등과 같은 상용 LLM 서비스는 LLM이 사이버 공격에 사용되는 것을 막기 위한 방어 기법을 자체적으로 탑재하고 있다. 그러나 연구팀의 실험 결과, 이러한 방어 기법이 존재함에도 불구하고 쉽게 우회해 악의적인 사이버 공격을 수행할 수 있음이 확인됐다.

 

기존의 공격자들이 시간과 노력이 많이 필요한 공격을 수행했던 것과는 달리, LLM 에이전트는 이를 평균 5~20초 내에 30~60원(2~4센트) 수준의 비용으로 개인정보 탈취 등이 자동으로 가능하다는 점에서 새로운 위협 요소로 부각되고 있다.

1. LLM에이전트가 웹 기반 도구들을 사용해 공격자의 요구에 따라 답변 생성하는 과정
< 그림 1. LLM 에이전트가 웹 기반 도구들을 사용하여 공격자(유저)의 요구에 따라 답변을 생성하는 과정이다. >

연구 결과에 따르면, LLM 에이전트는 목표 대상의 개인정보를 최대 95.9%의 정확도로 수집할 수 있었다. 또한, 저명한 교수를 사칭한 허위 게시글 생성 실험에서는 최대 93.9%의 게시글이 진짜로 인식됐다.

 

뿐만 아니라, 피해자의 이메일 주소만을 이용해 피해자에게 최적화된 정교한 피싱 이메일을 생성할 수 있었으며, 실험 참가자들이 이러한 피싱 이메일 내의 링크를 클릭할 확률이 46.67%까지 증가하는 것으로 나타났다. 이는 인공지능 기반 자동화 공격의 심각성을 시사한다.

 

제1 저자인 김한나 연구원은 “LLM에게 주어지는 능력이 많아질수록 사이버 공격의 위협이 기하급수적으로 커진다는 것이 확인됐다”며, “LLM 에이전트의 능력을 고려한 확장 가능한 보안 장치가 필요하다”고 말했다.

2. 메타의 CEO인 마크 저커버그의 이메일 주소만을 활용 피싱 이메일 내용
< 그림 2. 메타의 CEO인 마크 저커버그의 이메일 주소만을 활용하여 LLM 에이전트 (Claude 사용)가 마크 저커버그를 대상으로 작성한 피싱 이메일 내용. LLM 에이전트가 스스로 대상자와 관련된 내용, 발신자, url 링크 문자 등을 설정한 것을 볼 수 있다. >

 

신승원 교수는 “ 이번 연구는 정보 보안 및 AI 정책 개선에 중요한 기초 자료로 활용될 것으로 기대되며, 연구팀은 LLM 서비스 제공업체 및 연구기관과 협력하여 보안 대책을 논의할 계획이다”라고 밝혔다.

3. Claude 기반 LLM 에이전트를 활용 얼마나 많은 사람들의 개인정보를 수집할 수 있는지 실험 결과
< 그림 3. Claude 기반 LLM 에이전트를 활용하여 얼마나 많은 사람들의 개인 정보를 수집할 수 있는지를 나타낸 실험 결과이다. 본 실험에서는 CS 교수들의 개인정보를 수집하였다. >

 

우리 학부 김한나 박사과정이 제1 저자로 참여한 이번 연구는 컴퓨터 보안 분야의 최고 학회 중 하나인 국제 학술대회 USENIX Security Symposium 2025에 게재될 예정이다. (논문명: “When LLMs Go Online: The Emerging Threat of Web-Enabled LLMs”, DOI: 10.48550/arXiv.2410.14569 )

 

한편 이번 연구는 정보통신기획평가원, 과학기술정보통신부 및 광주광역시의 지원을 받아 수행됐다.

전기및전자공학부 최경철 교수 SID (국제정보디스플레이학회) Fellow로 선임

Kyung Cheol CHOI KAIST
<최경철 교수>

우리 학부 최경철 교수님이 SID (Society for Information Display) 학회의 석학회원(Fellow)으로 선임되었습니다. 

 

디스플레이 분야에서 IEEE(국제전기및전자학회)와 SID(국제정보디스플레이) 학회에서 동시에 석학회원으로 선정된 연구자는 전 세계적으로 단 10명뿐입니다. SID 에서는 매년 5명의 Fellow만을 산업적 기여도 및 연구 업적을 평가하여선임하고 있고, 최경철 교수는 ‘For pioneering development of truly wearable OLED displays using fiber and fabric substrates’ 연구 업적으로 2025년 SID Fellow로 선임되었습니다.

 

 2018년에는 Merck Award를, 2022년도에는 UDC Innovative Research Award을 받은 바 있고, 2023년에도 Flexible display 연구 업적으로 IEEE Fellow로 선임된 바 있습니다. 

전기및전자공학부 윤준보 교수팀, 정밀한 압력 감지가 가능한 인공 촉각 시스템 개발

교수님 900 1
<(왼쪽부터) 윤준보 교수, 양재순 박사>

최근 개발된 로봇들은 계란을 섬세하게 집는 수준에 이르렀는데, 이같은 결과는 손 끝에 집적된 압력 센서가 촉각 정보를 제공했기 때문이다. 그러나, 이러한 세계 최고 수준의 로봇들조차도 물 속, 굽힘, 전자기 간섭과 같은 복잡한 외부 간섭 요소들이 존재하는 환경에서 압력을 정확히 감지하는 것은 아직 어렵다. KAIST 연구진이 물기가 묻은 스마트폰 화면과 같은 환경에서도 외부 간섭 없이 안정적으로 작동하며, 인간의 촉각 수준에 근접한 압력 센서를 개발하는 데 성공했다.

 

우리 학부 윤준보 교수 연구팀이 비가 오거나 샤워 후 스마트폰 화면에 물이 묻으면, 터치가 엉뚱하게 인식되는 ‘고스트 터치’와 같은 외부 간섭의 영향을 받지 않으면서도 높은 해상도로 압력을 감지할 수 있는 압력 센서를 개발했다.

 

흔히 터치 시스템으로 사용되고 있는 정전용량 방식 압력 센서는 구조가 간단하고 내구성이 뛰어나 스마트폰, 웨어러블 기기, 로봇 등의 휴먼-머신 인터페이스(Human-Machine Interface) 기술에 널리 활용되고 있다. 그러나 물방울이나 전자기 간섭, 굴곡으로 인한 굽힘 등 외부 간섭 요소에 의해 오작동이 발생하는 치명적인 문제가 있었다.

 

1. 비 오는 날 터치가 잘 되지 않을 때 모식도 e1742536089461
< 그림 1. (왼쪽) 비가 오는 날 스마트폰 표면에 물이 묻은 경우 터치가 잘 되지 않을때의 모식도. (가운데) 간섭이 존재하는 상황에서 센서의 의도치 않은 오작동 모식도. (오른쪽) 정상 상황과 간섭이 존재하는 상황에서의 전기장 분포 시뮬레이션 결과. 간섭이 존재하는 경우 프린지 필드의 왜곡이 발생한다. >

연구팀은 이와 같은 문제를 해결하기 위해 우선 정전용량 방식 압력 센서에서 발생하는 간섭의 원인을 정확히 파악하고자 했다. 그 결과, 센서 가장자리에서 발생하는 ‘프린지 필드(Fringe Field)’가 외부 간섭에 극도로 취약한 것을 확인했다.

 

이를 근본적으로 해결하기 위해서는 문제의 원인인 프린지 필드를 억제해야 한다는 결론에 이르렀다. 따라서, 연구팀은 이론적 접근을 통해 프린지 필드에 영향을 미치는 구조적 변수들에 대해 집중적으로 탐구했고 전극 간격을 수백 나노미터(nm) 수준으로 좁힐 경우 센서에서 발생하는 프린지 필드를 수 퍼센트 이하로 억제할 수 있음을 확인했다고 밝혔다.

2. 연구팀이 개발한 나노 갭 압력 센서 사진
< 그림 2. (왼쪽) 본 연구에서 개발한 나노 갭 압력 센서의 사진. (가운데) 나노 갭 설계로 인해 프린지 필드가 억제되어 외부 간섭을 효과적으로 차단하는 모식도. (오른쪽) 실제로 제작된 나노갭 압력 센서의 전자 현미경 사진. >

 

연구팀은 독자적인 마이크로/나노 구조 공정 기술을 활용해 앞서 설계한 900나노미터(nm) 수준의 전극 간격을 갖는 나노 갭 압력 센서를 개발했다. 개발된 센서는 압력을 가하는 물질에 관계없이 압력만을 신뢰적으로 감지했으며 굽힘이나 전자기 간섭에도 감지 성능에 영향이 없는 것을 검증했다.

 

또한, 연구팀은 개발한 센서의 특성을 활용해 인공 촉각 시스템을 구현했다. 인간의 피부에는 메르켈 원반(Merkel’s disc)라는 압력 수용기가 있어 압력을 감지하는데, 이를 모사하기 위해서는 외부 간섭에는 반응하지 않고 오직 압력에만 반응하는 압력 센서 기술이 필요했지만 기존 기술들로는 이러한 조건을 만족시키기가 어려웠다.

 

윤준보 교수 연구팀이 개발한 센서는 이러한 제약을 모두 극복했으며, 밀도 또한 메르켈 원반 수준에 도달해 무선으로 정밀한 압력 감지가 가능한 인공 촉각 시스템을 구현하는 데 성공했다.

 

3. 인체 모사 나노 갭 압력 센서 모식도
< 그림 3. (왼쪽) 인체의 압력 감지 방식과 이를 모사하기 위한 간섭에서 자유롭고 높은 해상도를 갖는 나노 갭 압력 센서의 모식도. (오른쪽) 나노갭 압력 센서를 활용해 구현한 무선 인공 촉각 시스템으로 물이 묻은 물체를 집는 모습. 표면에 물이 묻어도 반응하지 않으며 오직 압력만을 정밀하게 감지한다 >

 

더 나아가, 다양한 전자기기로의 응용 가능성을 확인하기 위해 포스 터치 패드 시스템 역시 개발해 압력의 크기와 분포를 간섭 없이 높은 해상도로 얻을 수 있음을 검증했다고 밝혔다.

 

윤준보 교수는 “이번 나노 갭 압력 센서는 비 오는 날이나 땀이 나는 상황에서도 기존 압력 센서처럼 오작동하지 않고 안정적으로 동작한다. 많은 사람들이 일상에서 겪어온 불편을 해소할 수 있을 것으로 기대한다.”라고 말했다. 이어 “앞으로 로봇의 정밀한 촉각 센서, 의료용 웨어러블 기기, 증강현실(AR) 및 가상현실(VR) 인터페이스 등 다양한 응용 분야에서 혁신적인 변화를 가져올 수 있을 것이다”고 덧붙였다.

 

4. 나노 갭 압력 센서 활용 터치패드 시스템 모식도
< 그림 4. (왼쪽) 나노 갭 압력 센서를 활용해 구현한 포스 터치 패드 시스템과 센서 위에 물이 차있는 상황에 대한 모식도. (가운데) 포스 터치 패드 시스템을 활용해 물이 차있는 상황에서의 멀티 터치 측정 결과. (오른쪽) 센서 위에 물에 의한 간섭이나 교차간섭 없이 압력의 크기와 분포를 정밀하게 나타내는 3차원 측정 결과 >

 

우리 학부 전기및전자공학부 양재순 박사, 정명근 박사과정 그리고 성균관대 반도체융합공학과 유재영 조교수(KAIST 박사 졸업)가 제1 저자로 수행한 이번 연구는 저명 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’에 2025년 2월 27일 출판됐다. (논문 제목: Interference-Free Nanogap Pressure Sensor Array with High Spatial Resolution for Wireless Human-Machine Interfaces Applications, https://doi.org/10.1038/s41467-025-57232-8)

 

한편, 이번 연구는 한국연구재단의 중견연구지원사업과 선도연구센터지원사업의 지원을 받아 수행됐다.

전기및전자공학부 이시현 교수, IEEE Transactions on Information Theory 부편집장 선임

이시현 교수님 프로필 사진
<이시현 교수님>

우리 학부 이시현 교수님이 정보이론 분야에서 가장 권위있는 학술지인 IEEE Transactions on Information Theory의 부편집장 (Associate Editor)으로 선임되었습니다. 

 

IEEE Transactions on Information Theory는 1953년 창간되어 IEEE에서 가장 오래된 저널 중 하나이며, 정보의 표현, 저장, 전송, 처리 및 학습에 관한 이론적 연구를 다루는 대표적인 학술지입니다. 특히, 통신, 압축, 보안, 기계학습, 양자정보 등 다양한 정보 관련 분야에서 근본적인 원리와 응용을 탐구하는 연구를 중점적으로 게재하고 있습니다. 

 

부편집장은 저널의 논문 심사 및 학술적 방향을 결정하는 핵심적인 역할을 수행하며, 학문적 발전을 주도하는 중요한 직책입니다. 특히, 이번 선임은 한국 대학 소속 연구자로서는 저널 창간 이후 70년여 년간 네 번째로 이루어진 성과로, 이 교수님의 연구 성과와 국제적인 학문적 기여가 높이 평가된 결과입니다.

 

이시현 교수님의 주요 연구 분야는 통신, 통계적 추론 및 기계학습 등 정보시스템에서의 정보이론적 한계 성능 분석 및 최적 기법 연구이며, 차세대 통신 및 지능형 시스템의 이론적 기반을 마련하는 데 기여하고 있습니다. 또한, 이 교수님은 정보이론 분야의 대표적인 국제 학회인 IEEE Information Theory Workshop의 프로그램 의장을 역임하였으며, IEEE Information Theory Society의 Distinguished Lecturer로 활동하며 최신 연구 동향을 학계에 전파하고, 정보이론 연구의 중요성을 널리 알리는 데 기여하고 있습니다.

신태인 박사(김정호 교수님 연구실), DesignCon 2025 국제학회서 ‘최우수 논문상’ 선정

신태인 박사의 증명사진
<신태인 박사>
반도체 설계 분야에서 세계적인 권위를 지닌 국제학회 ‘디자인콘(DesignCon) 2025’에서 우리 학부 김정호 교수님 연구실(KAIST TERA Lab) 신태인 박사가 ‘최우수 논문상’ 수상자로 선정됐습니다.
 
신태인 박사는 3년 전 ‘DesignCon 2022’에서도 최우수 논문상 수상자로 선정된 바 있습니다. 당시 김정호 교수님 연구실(KAIST TERA Lab)은 전체 논문 제출자 가운데 오직 8명에게만 주어지는 최우수 논문상의 영예를 신태인 박사를 포함해 김성국·최성욱·김혜연 씨 등 4명의 학생이 동시에 수상해 산·학·연 관계자들로부터 많은 관심을 받았습니다.
 
‘디자인콘(DesignCon)’은 반도체 및 패키지 설계 분야에서 권위를 인정받는 국제학회입니다. 인텔, 엔비디아, 구글, 마이크론, 램버스, 텍사스인스트루먼트(TI), AMD, IBM, 앤시스(ANSYS) 등 글로벌 빅테크 기업 소속 연구원과 엔지니어, 전 세계 유명 대학(원) 학생들이 해마다 미국 실리콘밸리에서 열리는 학술대회를 겸한 학회에 참가하고 있습니다.
 
‘디자인콘(DesignCon)’은 매년 6월 말 논문 초안을 모집하고 12월 말까지 접수된 전체 논문을 심사합니다. ‘디자인콘(DesignCon)’에 접수되는 논문은 대부분 실무와 밀접한 관련이 있거나 곧바로 제품에 적용할 수 있는 실용적인 기술에 관한 내용을 담고 있습니다.
 
접수된 전체 논문 가운데 20편 이내 논문이 최우수 논문상 후보로 뽑힙니다. 이후 열리는 학술대회에 해당 논문의 저자가 직접 참석해서 45분간의 구두 발표를 포함해, 엄중한 심사 절차를 거친 후 8편의 논문이 최우수 논문상으로 선정됩니다.
 
신태인 박사도 최우수 논문상 후보로 뽑힌 같은 연구실 소속 김혜연 박사과정 학생, 안현준 석사과정 학생과 함께 올 1월 28일부터 사흘간 미국 실리콘밸리 산호세에서 열린 ‘DesignCon 2025’ 국제학회에 참석해 구두 발표하는 과정을 거쳤습니다.  
 
테라랩 관계자는 “신태인 박사는 2024년 말 접수, 채택된 전체 100여 편의 논문 중 해당 분야의 기술혁신에 기여한 점을 인정받아 심사위원들로부터 좋은 평가를 받았다”고 설명했습니다.
 
신 박사의 논문 주제는 ‘강화학습을 활용한 전력 잡음 지터 기반 HBM 통합 전력 무결성 설계(PSIJ Based Integrated Power Integrity Design for HBM Using Reinforcement Learning: Beyond the Target Impedance)’입니다.
 
이 논문에서 신 박사는 고대역폭 메모리(HBM) 패키지의 전력 무결성 설계를 위해 시간 정보가 포함된 전력 잡음 지터(Power supply noise induced jitter)를 기준으로, 지터에 영향을 주는 설계 요소를 인공지능(AI)을 활용, 설계를 최적화할 수 있다는 방법론을 제시해, 주목을 받았습니다.
 
특히 신 박사의 논문은 “기존 임피던스 기반의 전력 분배망 설계의 한계를, 인공지능 강화학습과 전력 잡음 지터를 활용해 효과적으로 전력 무결성을 향상, 설계할 수 있음을 검증한 점과 인공지능(AI)을 활용한 연구의 독창성 측면에서 심사위원들로부터 높은 평가를 받았다”고 테라랩 관계자는 강조했습니다.
 
신태인 박사는 “대규모 인공지능(AI) 구현을 위해 점점 더 고속화돼 가는 차세대 HBM 기반 패키지 시스템 설계에 있어, 제안한 방법론을 기반으로 반도체 신호 및 전력 무결성 설계의 토대를 마련하겠다”고 포부를 밝혔습니다.
 
김정호 교수 연구실은 올 3월 현재 석사과정 17명, 박사과정 10명 등 모두 27명의 학생이 반도체 전·후공정에 들어가는 다양한 패키지와 인터커넥션 설계를 강화·모방 학습과 같은 인공지능(AI) 머신러닝(ML)을 활용해 최적화하는 연구를 수행 중이다. 이 밖에 대규모 인공지능(AI) 구현을 위한 HBM 기반 컴퓨팅 아키텍트와 관련한 연구도 함께 진행 중입니다.

전기및전자공학부 이정용 교수팀, 기존 양자점 뛰어넘는 적외선 센서 기술 개발​

이정용 교수 연구팀 단체사
< (왼쪽부터) 전기및전자공학부 이정용 교수, 김윤후 박사과정, 정보전자연구소 김병수 박사 >

최근 양자 큐비트 기술 분야에서는 양자 상태를 확보하기 위해 결정질 반도체를 활용한 아발란체 광다이오드 소자*들이 활용되고 있으나, 높은 열잡음으로 인해 극저온 구동이 필수적이며, 적외선 대역에서 높은 탐지 효율을 갖는 소재의 부재로 기술적 한계에 직면했다. 우리 연구진이 양자점 소재가 차세대 양자 기술로 활용될 돌파구를 제시했다. *아발란체 광다이오드 소자: 매우 미세한 빛을 증폭하여 감지하는 고성능 센서 소자로서 야간 투시경이나 자율주행차, 우주 관측, 양자통신 등에 사용 

 

우리 학부 이정용 교수 연구팀이 콜로이드 양자점을 활용해 하나의 적외선 광자 흡수를 통하여 85배의 전자를 생성할 수 있는 아발란체 전자 증폭 기술*을 개발하여 기존 기술의 한계를 뛰어 넘는 감도를 달성했다. *아발란체 전자 증폭: 기술 강한 전기장이 인가된 반도체에서 전자가 가속되어 인접 원자와 충돌을 통해 다수의 전자를 생성하는 신호 증폭 기술 

 

화학적으로 합성된 반도체 나노입자인 콜로이드 양자점은 용액 기반 반도체로서 적외선 센서의 실용적인 후보로 주목 받고 있으며, 결정질 반도체와 다른 에너지 구조를 가져 열잡음 생성을 억제하는 장점이 있지만, 전하 이동도가 낮고, 양자점 표면에서 자주 발생하는 불완전 결합 때문에 전하의 재결합이 촉진되어 전하 추출이 저하되는 문제가 있었다.

 

연구진은 강한 전기장을 인가해 전자를 가속하여 운동에너지를 얻고, 인접 양자점에서 다수의 추가 전자들을 생성함으로써 상온에서 적외선을 조사 시 신호가 85배 증폭되고 1.4×1014 Jones 이상의 탐지 감도를 가지는 소자를 구현하였는데 이는 일반 야간 투시경보다 수만 배 정도 높은 감도를 보여준다.

 

양자점 소재(a) 및 소자(b)에서의 아발란체 전하 증폭 메커니즘 개요도
<그림 1. 양자점 소재(a) 및 소자(b)에서의 아발란체 전하 증폭 메커니즘 개요도. a, 높은 전기장이 인가되면 양자점 소재내 전하를 띈 결함이 전도 전자로부터 충돌을 통해 에너지를 받아 들뜬 상태를 형성한 후, 에너지적 안정화가 일어나며 2차 전자가 생성된다. b, 소자의 관점에서 전자가 충분히 가속되어 에너지를 얻기 위해서는 충분한 양자점 층의 두께가 요구되며, 540nm 이하의 두께에서는 전자가 가속간 증폭을 위해 충분한 에너지를 얻기 전에 금속 산화물 층간 계면에서 얇아진 에너지 밴드 구조로 인해 전자 터널링이 발생한다. 따라서 540nm 이상의 충분한 양자점 층을 형성시켜 주어야만 효율적인 전자 증폭을 유도할 수 있다. c, 최적 양자점 아발란체 다이오드 소자의 구조 및 탐지 감도. 본 연구에서는 하나의 광자 흡수를 통해 약 85개의 전자를 생성하는 전자 증폭 기술을 도입하여 최대 1×1014 Jones의 높은 탐지 감도를 달성한 양자점 소자를 개발하였다. >

 

적외선 광검출기는 자율주행차부터 양자컴퓨팅에 이르기까지 다양한 응용 분야에서 핵심적인 역할을 하지만, 기존 양자점 기반 기술은 민감도와 잡음 문제로 한계가 있었다. 

 

이번 연구는 새로운 패러다임 전환을 불러올 기술이 될 것으로 기대되며, 양자 기술이 관련된 핵심 원천 기술을 선점함으로써 글로벌 양자 기술 시장을 대한민국이 주도할 수 있는 중요한 기술적 토대를 확보했다고 평가받고 있다. 

 

제1 저자인 김병수 박사는 “양자점 아발란체 소자는 기존에 보고된 바 없는 신개념 연구 분야로서, 본 원천 기술을 통해 글로벌 자율주행차와 양자 컴퓨팅, 의료 영상 시장 등을 선도할 벤처 기업 육성을 주도할 수 있을 것”이라고 말했다. 

 

KAIST 정보전자연구소 김병수 박사와 IMEC의 이상연 박사 및 한국세라믹기술원의 고현석 박사가 공동 제1 저자로 참여한 이번 연구는 국제 최상위 학술지 `네이처 나노테크놀로지(Nature Nanotechnology)’ 2024년 12월 18일 자 온라인판에 게재됐다. (논문명 : Ultrahigh-gain colloidal quantum dot infrared avalanche photodetectors DOI: https://doi.org/10.1038/s41565-024-01831-x) 

 

한편 이번 연구는 한국연구재단의 지원을 받아 수행됐으며, 주요 지원 사업으로는 나노및소재기술개발사업(경쟁형), 미래디스플레이 전략연구실사업, 개인기초연구사업 중견연구가 있다.