

[연구성과도 1. DirectCXL 플랫폼의 개요 및 CXL1.1과 CXL2.0의 차이]
이번 연구는 삼성미래기술육성사업과 정보통신기획평가원의 지원을 받아 수행됐다.
[연구성과도, 그림 . HolisticGNN 데모 결과 ]
[발표사진. NVMW에서 수상발표, 정명수 교수 연구실 권미령 박사과정생]
[그림 1. hBN에 진행하는 영상 포논-폴라리톤을 초고화질로 측정하기 위해 사용되는 나노 팁]
[KAIST 유창동 교수, 권인소 교수, Chaoning Zhang 연구원, Kang Zhang 연구원,왼쪽부터]
ECCV는 1990년에 시작되었으며 영상 및 신호처리에 관한 인공지능 및 머신러닝의 최신 연구를 소개하는데 초점을 맞추고 있으며, Computer Vision 및 Deep Learning 분야의 최우수 학회 중 하나로 오랫동안 각광받고 있다. 올해 ECCV 2022 에서는 5,803 개의 제출 논문 중 1650 개의 논문 (28%) 이 채택되었으며 이중 158 개의 논문은 (2.7%) 우수 연구 성과로 채택되었다.
본 연구는 ‘Decoupled Adversarial Contrastive Learning for Self-supervised Adversarial Robustness’ 라는 제목으로 2022 년 10월 23에 Israel, Tel Aviv에서 우수 연구 성과로 발표될 예정이다.
인공지능이 많은 발전을 해서, 다양한 영역에서 좋은 성과를 내고 있다. 그렇지만 아직까지 사람의 완전한 신뢰를 받고 있지 못하다. 완전한 신뢰성을 확보하기 위해서는 적은 데이터로 학습이 되어야 하며, 강인성이 더 확보가 되어야 한다. 이 두 가지를 수행하기 위해 자기 지도학습 (Self-supervised learning) 과 적대적(adversarial learning)을 결합하는 노력들이 시도가 되었다.
이 논문에서는 그것을 증류기법을 이용해서 효율적으로 결합하여, label 없이 자가 학습을 할 수 있는 adversarial learning framework를 제안하였다.
본 연구는 ECCV Oral Presentation (acceptance rate 2.7%) 논문으로 채택이 되었다.
[연구성과도 : Adversarial Learning 기반의 Self Supervised Learning 모식도]
이 연구는 과학기술정보통신부의 재원으로 정보통신기술진흥센터의 지원을 받아 수행됐다.
[KAIST 이성주 교수, 신재민 연구원, 칭화대 Yunxin Liu 교수, Yuanchun Li 교수, 왼쪽부터]
[연구팀사진, KAIST 조민승 박사과정, 윤준보 교수, 부산대 서민호 교수(KAIST 박사졸업), 왼쪽부터]
*상전이(phase transition): 화학, 열역학 및 기타 관련 분야에서 일반적으로 물질의 기본 상태(결정성, 고체, 액체, 기체) 사이의 변화를 뜻한다.
[노용만교수, 박사과정 이상민, 박사과정 박성준, 왼쪽부터]
전기및전자공학부 이상민, 박성준 박사과정생 (노용만교수 연구실) 이 11th Video Browser Showdown (VBS 2022)의 AVS (Ad-hoc Video Search) 부문에서 우승 (Best AVS) 을 차지하였다.
Video Browser Showdown 은 비디오 검색의 매년 개최되는 국제 대회이며, 이번 VBS 2022는 11번째 국제 대회이다.
올해 대회는 전세계에서 본선에 선정된 16개 비디오 검색 팀이 지난 6월 6일부터 7일까지 이틀 동안 Vietnam Phú Quốc에서 진행되었다.
AVS 부문은 임의의 쿼리에 대해 수백만(약 250만)의 비디오에서 관련 비디오들을 빠르게 검색하여 맞추는 챌린저이다.
이상민, 박성준 박사과정생이 개발한 검색엔진은 visual-audio-language 멀티 도메인의 multi-modal 연관성을 기반으로 타겟 비디오를 검색하는 멀티모달러닝 알고리즘이 기반 된 것이다.
세개의 모달리티로 구성된 latent 정보로 해당 비디오를 최적으로 검색한다.
그리고 이와 연관된 visual-audio 멀티모달 표현 학습 연구 결과는 AI Top tier 학술대회인 CVPR 2022에 “Weakly Paired Associative Learning for Sound and Image Representations via Bimodal Associative Memory” 논문으로 발표될 예정이다.
수상 대회 정보
– 대회명 : 11th Video Browser Showdown 2022
– 수상명 : Best AVS (1st place winner in Ad-hoc Video Search)
– 수상자 : 이상민, 박성준 (노용만 교수 연구실)
[(왼쪽부터) KAIST 전기및전자공학부 김상현 교수, 박주혁 박사과정, 금대명 박사, 백우진 박사과정]
본 연구결과는 적색 마이크로 엘이디를 3차원 적층 방식으로 집적하여 세계적인 수준의 해상도인 1600 PPI 구현에 성공한 연구로써 본 연구에서 활용된 모놀리식 3차원 집적에 관한 연구 결과는 차세대 초고해상도 디스플레이 구현을 위한 좋은 가이드로써 활용될 것으로 예상된다.
그림 2. 모놀리식 3차원 적층형 마이크로 디스플레이의 구동 이미지.