Academics

Graduate Program

Academics

Graduate Program

Graduate Program

Digital Integrated Circuits

Subject No.
Research
Credit
Classification
EE678
Circuit, Device
3
72

This course is designed to expose students to the important issues in high performance CMOS circuit design. This course covers the data path design in full custom design methodology, clocking strategy, and the state-of-the art CMOS logic styles.

Recommend

This course will introduce elementary concepts of biomedical electronics and guide students on how to apply their electrical engineering skills to solve problems in medicine and biology. Topics include biomedical sensors, nano-biosensors, nano-bio actuators, bio-inspired devices for medicine, non-invasive and ubiquitous body sensing, and their clinical applications.

Recommend

Communication, Signal
EE202

This course is an introduction to continuous-time and discrete-time signals and systems. The course covers Fourier series, Fourier transform, Laplace transform, and z-transform. Various types of systems with emphasis on linear time invariant system is studied.

Recommend

Wave
EE204

This course covers introductory electromagnetic fields and waves. Static electric fields and static magnetic fields are discussed. Time-varying fields and Maxwell’s equations are introduced. Waves and transmission lines are studied.

Recommend

This course covers data structures, algorithms, JAVA for electron electronics engineering. We study object-oriented programming techniques and use programming language C, JAVA.

Recommend

Signal, Wave, Communication, Computer, Circuit, Device
EE305

Experiments related to electronics are performed. Focus is made for both hands-on experience and design practice. (Prerequisite: EE201, EE304)

 

Recommend