Graduate (List)

Academics

Graduate Program

Home > Academics > Graduate

Academics

Graduate Program

Graduate Program

Curriculum

Circuit ∣ Device ∣ Computer ∣ Communication ∣ Wave ∣ Signal
EE509

This course addresses essential elements in how to write a good research/technical paper. The elements contain a right understanding of graduate studies, a method of doing good research and good presentation, how to note a memo, writing a patent, writing a technical paper, and case studies.

Recommend

Circuit
EE511

The goal of this course is to understand the principles and organization of computer systems and to learn the performance enhancing techniques and quantitative analysis methods used in advanced processors. This course covers high-performance techniques such as pipelining and out-of-order processing, memory hierarchy including a cache memory and virtual memory, interrupt processing, and how to design a processor based on quantitative analysis. In addition, recent important topics such as SIMD and multiprocessors will be introduced and design and simulation for a virtual processor are to be practiced for a comprehensive understanding of computer systems.
(Prerequisite: EE303, EE312)

Lecture on Operating System and Network System handles network middleware. Network middleware is a distributed software layer that works above the network operating system and below the application layer and abstracts the heterogeneity of the underlying environment. The role of middleware in network systems will become increasingly important, especially in emerging technology areas such as mobile computing where the integration of different applications and services from different wired and wireless networks becomes important. Since middleware is represented with providing useful building blocks for the construction of software component, the lecture will introduce basic principles, architectures, interactions in distributed systems, and a broad sense of content in the computing infrastructure.

Computer
EE515

Every scientific research starts with finding new problems. Likewise, the most important step in security research is to discover new attacks. Today, media is filled with attacks on various systems: Web servers, DNS, Internet banking, e-voting systems, cellular networks, social networks, mobile phones, nuclear power plants, and implantable medical devices. These attacks are originated from various vulnerabilities, such as user interface design, ignorance or security by obscurity, deployment mistakes, and physical exposure. The main objective of this course is to learn how to think like an adversary. In other words, we will look at various ingenious attacks and discuss why and how such attacks were possible. This is the first crucial step to design and deploy systems robust against various attacks. (Prerequisite: EE323, EE415)

Computer
EE516

This lecture covers the topics of embedded software programming including Linux basic commands, shell programming, kernel structure, interprocess communication, file system, device drivers, and bootloader structure. Each student will practice implementing the lectured topics on an embedded computer to be a real embedded system programmer. (Prerequisite: EE209)

Recommend

Computer ∣ Communication ∣ Signal
EE523

The main goal of this course is to present advanced topics of convex optimization which are essential for researches in communications and networks, estimation and signal processing, data analysis and modeling, statistics and finance, electronic circuit design, automatic control, and industrial engineering and to deal with their application areas. We study the primal-dual interior point method, semi-definite programs, and second-order cone programs.

Computer ∣ Communication ∣ Signal
EE528

In this course, based on the fundamental concepts and knowledge addressed in EE210, we discuss advanced topics in probability and random processes for applications in engineering. Topics include algebra of sets, limit events, random vectors, convergence, correlation functions, independent increment processes, and compound processes. (Prerequisite: {EE210} or {Approval of the Instructor})