전기및전자공학부 권경하 교수 연구팀, 수술 후 방광 기능 전자센서로 모니터링하는 생체전자 시스템 개발

전기및전자공학부 권경하 교수 연구팀, 수술 후 방광 기능 전자센서로 모니터링하는 생체전자 시스템 개발

 

images 000076 photo1.jpg 6

<(좌측부터) 권경하 교수, 박도윤 석사과정, 미국 노스웨스턴대학교 김지혜 박사 사진>
 

방광절제술을 받은 환자들의 성공적인 재활을 위해 카테터* 삽입없이 방광 기능을 안전하게 모니터링하는 생체전자 시스템이 개발되어 화제다.

*카테터: 방광에 삽입하는 고무 또는 금속제의 가는 관 

 

전기및전자공학부 권경하 교수팀이 미국 노스웨스턴대 김지혜 박사와 공동연구를 통해 방광의 크기 및 압력 변화를 정확하게 측정하는 디지털 헬스케어 기술을 개발했다고 16일 밝혔다. 

 

부분적 방광절제술*은 긴 회복 기간이 필요하며, 이 기간에 요로 동역학 검사**(이하 UDS)를 통해 몸 밖으로 소변을 배출하는 기능을 간헐적으로 평가한다.

그러나 UDS는 환자 친화적이지 않으며 사용자마다 결과에 변동성이 있고, 연속적인 데이터 수집 능력이 제한된다. 또한 카테터 관련 요로 감염의 위험을 초래하며, 고위험 환자에게서는 상행성 신우신염으로 진행되기도 한다. 

이러한 UDS의 적절한 대안으로, 요로에 카테터를 삽입하지 않고 방광의 상태를 연속적이고 실시간으로 모니터링할 수 있는 기술이 필요하다.

  *부분적 방광절제술: 방광에 종양이 있는 부위를 잘라내고 나머지 방광을 이어 붙여주는 수술

  **요로 동역학 검사: 방광과 요도의 전반적인 기능을 확인하여 치료 계획을 세우기 위한 진단적 검사 

 

이에 연구팀은 방광의 충전 및 배뇨와 관련된 기계적 변형 변화를 무선 원격 측정할 수 있는 이식형 방광 플랫폼을 개발했다. 

이 시스템은 생분해성 스트레인 센서를 이용해 방광의 크기와 압력 변화를 실시간으로 측정하고, 회복 기간이 끝나면 해당 센서가 신체 내에서 자연스럽게 용해돼 사라지는 것이 특징이다. 모니터링 장비 제거를 위한 추가 수술이 필요 없고 합병증 위험을 줄이는 것은 물론 환자의 편안함과 회복 시간을 개선한다.

 

images 000076 image1.jpg 6

< 그림 1. 방광 기능 모니터링을 위한 무선 이식형 플랫폼 (위), 쥐 모델 실험 셋업 (중간), 개코원숭이 실험 셋업(아래) >

 

연구팀은 이 플랫폼을 이식 후 최대 30일까지 실시간 변화를 재현적으로 측정할 수 있음을 쥐 모델에서 입증했다. 또한 개코원숭이 실험을 통해, 해당 기술이 전통적인 UDS와 비교해 최대 8주까지 압력 측정의 일치성을 보였다. 이러한 결과는 해당 시스템이 장기간 수술 후 방광 회복 모니터링을 위한 UDS의 적절한 대안으로 사용될 수 있음을 시사한다. 

 

권경하 교수는 “비인간 영장류(개코원숭이)를 활용한 광범위한 실험을 통해 방광 기능에 대한 정확하고 신뢰할 수 있는 데이터를 제공하는 장치의 효능을 입증했다ˮ면서 “환자들의 회복 시간을 단축하고 전반적인 수술 결과를 개선하는데 활용할 수 있을 것ˮ이라고 말했다. 

 

이번 연구 결과는 국제 학술지 `미국 국립 과학원 회보 (Proceedings of the National Academy of Sciences; PNAS)’에 지난 4월 2일 발표됐다. 

(논문명 : A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery, 링크: https://www.pnas.org/doi/abs/10.1073/pnas.2400868121?af=R

한편, 이번 연구는 과학기술정보통신부 한국연구재단의 기초연구사업, 지역혁신선도연구센터사업 및 BK21의 지원을 받아 수행됐다.

 

 

전기및전자공학부 정명수 교수, 오늘 6월 IEEE/ACM ISCA 명예의 전당 헌액

전기및전자공학부 정명수 교수, 오늘 6월 IEEE/ACM ISCA 명예의 전당 헌액

 

Inline image 2024 04 08 11.35.51.953

<졍명수 교수 사진>
 

전기및전자공학부 정명수 교수가 올해 미국 전기전자공학회(IEEE)/전산공학회(ACM) 국제 컴퓨터 아키텍처 심포지엄(The International Symposium on Computer Architecture, 약칭 “ISCA”의 명예의 전당(Hall of Fame)에 오는 6월 헌액 된다.  

 

ISCA는 컴퓨터 아키텍처 연구의 최전선에서 중요한 역할을 하는 최고권위를 가진 국제적인 학술대회 (https://iscaconf.org/isca2024/)로 올해는 6월 29일부터 7월 3일까지 아르헨티나에서 열린다. 

 

정명수 교수는 올해 채택된 대규모 Cross-Silo Federated Learning에 대한 하드웨어 가속 연구로 총 8편 이상의 논문을 게재하여 명예의 전당에 포함되게 된다. 

이외에도 정명수 교수는 CXL 컴퓨터 시스템의 구조적 설계와 관련된 혁신적인 연구와 기술 발전을 소개하고, 논의하기 위하여 미국 캘리포니아 Sunnyvale에 메타(Meta)시설에서 열리는 5월 OCP Composable Memory Systems 행사에 인텔, 우버, AMD등과 함께 초대되어 KAIST의 기술과 CXL에 대한 논의 일정을 가지는 등 다양한 활동을 하고 있다.

 

전기및전자공학부 최신현 교수 연구팀, (Nature 게재) 차세대 뉴로모픽 컴퓨터/메모리용 신개념 반도체 소자 개발

전기및전자공학부 최신현 교수 연구팀, (Nature 게재) 차세대 뉴로모픽 컴퓨터/메모리용 신개념 반도체 소자 개발

 

Inline image 2024 04 03 15.57.51.490

<(좌측부터) 최신현  교수, 박시온 석박통합과정, 홍석만 박사과정 사진>
 

전기및전자공학부 최신현 교수 연구팀이 디램 (DRAM) 및 낸드(NAND) 플래시 메모리를 대체할 수 있는 *초저전력 차세대 상변화 메모리 소자를 개발했다고 4일 밝혔다.

☞ 상변화 메모리(Phase Change Memory): 열을 사용하여 물질의 상태를 비정질과 결정질을 변경하여이를 통해 저항 상태를 변경함으로써 정보를 저장하거나 처리하는  메모리 소자.

 

기존 상변화 메모리는 값비싼 초미세 반도체 노광공정을 통해 제작하며  소모 전력이 높은 문제점이 있었다. 기존 연구는 메모리 동작을 위한 발열 효과를 높이기 위해 초미세 반도체 노광공정을 이용해 소자의 물리적 크기를 줄여 소비 전력을 낮추는 연구가 진행됐으나, 소비 전력 개선 정도가 작고 공정비용과 공정 난이도가 증가해 실용성 측면의 한계점이 존재했다.

 

최 교수 연구팀은 상변화 물질을 전기적으로 극소 형성하는 방식을 통해 제작한 초저전력 상변화 메모리 소자로 값비싼 노광공정 없이도 매우 작은 나노미터(nm) 스케일의 상변화 필라멘트를 자체적으로 형성하였다.

이는 공정 비용이 매우 낮을 뿐 아니라 초저전력 동작이 가능하다는 획기적인 장점이 있다

최신현 교수 연구팀은 이러한 상변화 메모리의 소비 전력 문제를 해결하기 위해상변화 물질을 전기적으로 극소 형성하는 방식으로 기존의 값비싼 초미세 노광공정을 이용한 상변화 메모리 소자보다 소비 전력이 15배 이상 작은 초저전력 상변화 메모리 소자 구현에 성공했다.

 

전기및전자공학부 박시온 석박사통합과정홍석만 박사과정이 제저자로 참여한 이번 연구는 저명한 국제 학술지 `네이처(Nature)’ 4월호에 4 4일 자 출판됐다. (논문명 : Phase-Change Memory via a Phase-Changeable Self-Confined Nano-Filament)

 

image 1

<그림1. 본 연구에서 제작한 초저전력 상변화 메모리 소자 개념도, 그리고 기존 상변화 메모리 소자 대비 초저전력 상변화 메모리 소자의 소비 전력 감소 비교>

 

한편 이번 연구는 한국연구재단 차세대 지능형반도체기술개발사업, PIM인공지능반도체핵심기술개발(소자)사업우수신진연구그리고 나노종합기술원 반도체공정기반 나노메디컬 디바이스개발 사업의 지원을 받아 수행됐다

 

전기및전자공학부 최양규 교수 연구팀, 뉴로모픽 신경망으로 컴퓨팅 난제 해결

전기및전자공학부 최양규 교수 연구팀, 뉴로모픽 신경망으로 컴퓨팅 난제 해결

 

images 000075 photo1.jpg 13

<(좌측부터) 최양규 교수, 윤성윤 박사과정, 서강대학교 한준규 교수(우리 대학 졸업생) 사진>
 

전기및전자공학부 최양규 교수 연구팀이 현재 반도체 산업체에서 사용되는 실리콘 소재 및 공정만을 사용해 초소형 진동 신경망을 구축하여 경계선 인식 기능을 구현했으며 난제 중 하나인 그래프 색칠 문제*를 해결했다.

*그래프 색칠 문제: 그래프 이론에서 사용되는 용어로, 그래프의 각 정점에 서로 다른 색을 할당해야 하며, 이러한 색깔 구분 문제는 방송국 주파수가 겹쳐 난시청 지역이 발생하지 않도록 주파수를 할당하는 문제 등과도 유사해 다양하게 응용되고 있음 

 

최양규 교수 연구팀이 실리콘 바이리스터 소자로 생물학적 뉴런의 상호작용을 모방한 뉴로모픽 진동 신경망을 개발했다고 3일 밝혔다. 

빅데이터 시대가 도래하면서 인공지능 기술이 예전과 비교할 수 없을 만큼 비약적으로 발전하고 있다. 

인간의 뇌 기능을 모사하는 뉴로모픽 컴퓨팅 중 하나인 상호 간 결합된 진동 신경망(oscillatory neural network)은 뉴런의 상호작용을 모방한 인공 신경망이다. 

진동 신경망은 기본단위에 해당하는 진동자의 연결 동작을 이용하며 신호의 크기가 아닌 진동을 이용해 연산을 수행하므로 소모 전력 측면에서 이점을 가지고 있다.

 

 

images 000075 image1.jpg 12

< 그림 1. 바이리스터를 사용한 발진 신경망과 그 활용 >

 

연구팀은 실리콘 기반 진동자를 이용해 진동 신경망을 개발했다. 축전기를 이용해 두 개 이상의 실리콘 진동자를 연결하면, 각각의 진동 신호가 상호작용해 시간이 경과하면서 동기화(synchronization) 된다. 

연구팀은 진동 신경망으로 영상 처리에 사용되는 경계선 인식(edge detection) 기능을 구현했으며 난제 중 하나인 그래프 색칠 문제(vertex coloring problem)를 해결했다. 

또한 이번 연구는 제조 관점에서, 복잡한 회로나 기존 반도체 공정과 호환성이 낮은 소재 및 구조 대신, 현재 반도체 산업체에서 사용되는 실리콘 관련 소재 및 공정만으로 진동 신경망을 구축했기 때문에, 양산에 바로 적용 가능하다는 장점이 있다. 

 

연구를 주도한 윤성윤 박사과정, 서강대학교 한준규 교수는 “개발된 진동 신경망은 복잡한 컴퓨팅 난제를 계산할 수 있는 뉴로모픽 컴퓨팅 하드웨어로, 자원 분배, 신약 개발, 반도체 회로 설계 및 스케줄링 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ고 연구의 의의를 설명했다. 

윤성윤 박사과정과 한준규 교수가 공동 제1 저자로 참여한 이번 연구는 나노과학 분야 저명 국제 학술지 ‘나노 레터스(Nano Letters)’에 2024년 3월 24권 9호에 출판되었으며, 추가 표지 논문(Supplementary Cover)으로 선정됐다.

 

images 000075 image2.jpg 9

< 그림 2. 나노 레터스 추가 표지 논문으로 선정된 이미지 >

 

(논문명 : A Nanoscale Bistable Resistor for an Oscillatory Neural Network) (https://pubs.acs.org/doi/full/10.1021/acs.nanolett.3c04539). 

 

한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업 및 국가반도체연구실지원핵심기술개발사업의 지원을 받아 수행됐다.

 

윤인수 교수 연구실 이승현 학생, 국제 해킹 대회 ‘폰투온’에서 1.9억원 상금 획득

윤인수 교수  연구실 이승현 학생, 국제 해킹 대회 ‘폰투온’에서 1.9억원 상금 획득

 

Inline image 2024 03 25 08.45.23.377

<(좌측부터) 윤인수 교수, 이승현 학생 사진>

 
윤인수 교수 연구실(Hacking Lab)의 이승현 학생이 3월 20일부터 21일까지 진행된 국제 해킹 대회인 ‘폰투온(Pwn2Own)’에서 주목할만한 성과를 거두었다. 
캐나다 토론토에서 열린 이 대회에서 이승현 학생은 두 건의 브라우저 취약점을 발견하고 성공적으로 공격, 총 14만 5천 달러(약 1.9억원)의 상금을 획득했다. 이번 대회에서 이승현 학생은 구글 크롬과 마이크로소프트 엣지 브라우저를 대상으로 하나의 취약점을 이용한 동시 해킹이라는 ‘더블 탭’도 달성하였다.

 

‘폰투온’은 구글, 마이크로소프트, 애플과 같은 세계적인 IT 기업들이 파트너로 참여하는 해킹 대회로, 브라우저, 운영체제, 가상 머신 등 현대 컴퓨터 시스템의 핵심을 이루는 실제 제품들을 대상으로 한다. 

이 대회는 상금과 명성 뿐만 아니라, 대회 이후 발견된 취약점을 패치하여 사용자들의 안전을 증진시키는데 기여한다는 점에서도 중요한 의미를 갖는다.
 
윤인수 교수는 이번 수상을 통해 KAIST의 해킹 기술이 세계적인 수준에 도달했음을 입증했다고 평가하며, 앞으로도 KAIST에서 최고의 연구자이자 해커로 성장할 인재들이 많이 배출되기를 기대한다고 밝혔다. 
이번 성과는 국제적으로 인정받는 대회에서의 수상으로, KAIST의 기술력과 학생들의 우수성을 전 세계에 알리는 계기가 되었다.

 

1 1

<(좌측부터) 공격 성공, 크롬 해킹 성공, 엣지 해킹 성공 화면>

이가영 교수 연구팀, 극저온일수록 강력한 고성능 반도체 소자 개발

이가영 교수 연구팀, 극저온일수록 강력한 고성능 반도체 소자 개발

 

Inline image 2024 03 21 13.45.19.127

<(좌측부터) 이가영 교수, 석용욱 박사과정 사진>
 

KAIST 연구진이 초고속 구동이 가능하고 온도가 낮아질수록 성능이 더욱 향상되어 고주파수 대역 및 극저온에서의 활용 가능성이 기대되는 고성능 2차원 반도체 소자 개발에 성공하였다.

전기및전자공학부 이가영 교수 연구팀이 실리콘의 전자 이동도와 포화 속도*를 2배 이상 뛰어넘는 2차원 나노 반도체 인듐 셀레나이드(InSe)** 기반 고이동도, 초고속 소자를 개발했다고 20일 밝혔다.

 *포화 속도(Saturation velocity): 반도체 물질 내에서 전자나 정공이 움직일 수 있는 최대 속도를 가리킴. 포화 속도는 포화 전류량 및 차단 주파수(Cutoff frequency) 등을 결정하며 반도체의 전기적 특성을 평가할 수 있는 핵심 지표 중 하나임.

 **인듐 셀레나이드(InSe): 인듐과 셀레늄으로 이루어진 무기 화합물로 2차원 층간 반데르발스 결합을 이루고 있음 

 

연구진은 고이동도 인듐 셀레나이드에서의 2.0×107cm/s를 초과하는 우수한 상온 전자 포화 속도 값을 달성하였는데, 이는 실리콘과 다른 유효한 밴드갭을 지니는 타 2차원 반도체들의 값보다 월등히 우수한 수치이다.

특히 80 K으로 냉각시 InSe의 전자 포화 속도는 최대 3.9×107 cm/s로 상온 대비 50% 이상 향상되는데, 이는 전자 포화 속도가 약 20% 정도만 상승하는 실리콘 그리고 냉각하여도 포화 속도에 거의 변화가 없는 그래핀 대비 주목할만하다.

인듐 셀레나이드의 전자 포화 속도를 체계적으로 분석하여 보고한 것은 이번이 처음이며, 연구진은 전자 포화 속도 양상의 결정 기제 또한 규명하였다. 

 *이종접합: 서로 다른 결정 반도체의 2개의 층 또는 영역 사이의 접점

 

images 000075 image1.jpg 3

< 그림 1. 기존 소자와 비교한 신규 소자의 우수한 전자 이동도 및 전자 포화 속도 특성 >

 

이번 연구를 주도한 석용욱 학생은 “고성능 소자 개발을 통해 2차원 반도체 InSe의 높은 전자 이동도와 포화 속도를 확인할 수 있었다”며 “실제 극저온 및 고주파수 구동이 필요한 응용 기기에의 적용 연구가 필요하다”라고 덧붙였다.

 

이가영 교수는 “고주파수 전자 시스템 구현에는 높은 포화 속도가 요구되는데 이번에 개발한 고성능 전자 소자는 초고속 구동이 가능하여 5G 대역을 넘어 6G 주파수 대역에서의 동작이 가능할 것으로 예측된다”며 “저온으로 갈수록 소자의 성능이 더욱 향상되어 퀀텀 컴퓨터의 양자 제어 IC(Integrated circuit)와 같이 극저온 고주파수 구동 환경에 적합하다.”라고 말했다.

 

KAIST 전기및전자공학부 석용욱 박사과정 학생이 제1저자로 참여한 이번 연구는 나노과학 분야 저명 국제 학술지 `ACS Nano’에 2024년 3월 19일 정식 출판됐으며 동시에 저널 표지 논문으로 채택됐다. (논문명 : High-Field Electron Transport and High Saturation Velocity in Multilayer Indium Selenide Transistors)

 

한편 이번 연구는 한국연구재단의 신진연구자지원사업, 기초연구사업 및 BK21, KAIST의 C2(Creative & Challenging) 프로젝트, LX 세미콘-KAIST 미래기술센터, 그리고 포스코청암재단의 지원을 받아 수행됐다.

 

images 000075 image2.jpg 1

< 그림 2. ACS 나노 저널의 커버 이미지 >

황의종 교수 연구팀, 인공지능이 정확한 판단을 내리도록 돕는 새로운 학습 데이터 선택 기술 개발

[ 황의종 교수 연구팀, 인공지능이 정확한 판단을 내리도록 돕는 새로운 학습 데이터 선택 기술 개발 ]

 

Inline image 2024 03 15 10.37.39.776

<(좌측부터) 황의종 교수, 황성현 박사과정, 김민수 박사과정 사진>
 
 
최근 실생활에 활용되는 인공지능 모델이 시간이 지남에 따라 성능이 점차 떨어지는 현상이 다수 발견되었고, 이에 따라 지속가능한 인공지능 학습 기술에 대한 필요성이 커지고 있다. AI 모델이 꾸준히 정확한 판단을 내리는 것은 더욱 안전하고 신뢰할 수 있는 인공지능을 만들기 위한 중요한 요소이다. 
 
전기및전자공학부 황의종 교수 연구팀이 시간에 따라 데이터의 분포가 변화하는 드리프트 환경에서도 인공지능이 정확한 판단을 내리도록 돕는 새로운 학습 데이터 선택 기술을 개발했다고 14일 밝혔다. 최근 인공지능이 다양한 분야에서 인간의 능력을 뛰어넘을 정도의 높은 성능을 보여주고 있지만, 대부분의 좋은 결과는 AI 모델을 훈련시키고 성능을 테스트할 때 데이터의 분포가 변하지 않는 정적인 환경을 가정함으로써 얻어진다. 하지만 이러한 가정과는 다르게 SK 하이닉스의 반도체 공정 과정에서 시간에 따른 장비의 노화와 주기적인 점검으로 인해 센서 데이터의 관측값이 지속적으로 변화하는 드리프트 현상이 관측되고 있다. 
 
시간이 지나면서 데이터와 정답 레이블 간의 결정 경계 패턴이 변경되면, 과거에 학습되었던 AI 모델이 내린 판단이 현재 시점에서는 부정확하게 되면서 모델의 성능이 점차 악화될 수 있다. 본 연구팀은 이러한 문제를 해결하기 위해, 데이터를 학습했을 때 AI 모델의 업데이트 정도와 방향을 나타내는 그래디언트(gradient)를 활용한 개념을 도입하여 제시한 개념이 드리프트 상황에서 학습에 효과적인 데이터를 선택하는 데에 도움을 줄 수 있음을 이론적으로 실험적으로 분석했다. 그리고 이러한 분석을 바탕으로 효과적인 학습 데이터 선택 기법을 제안하여, 데이터의 분포와 결정 경계가 변화해도 모델을 강건하게 학습할 수 있는 지속 가능한 데이터 중심의 AI 학습 프레임워크를 제안했다.
 
 
images 000075 image1.jpg

< 그림 1. 본 연구에서 제안한 알고리즘이 드리프트 환경에서 적절한 학습 데이터를 선택하는 예시 >

 

본 학습 프레임워크의 주요 이점은, 기존의 변화하는 데이터에 맞춰서 모델을 적응시키는 모델 중심의 AI 기법과 달리, 드리프트의 주요 원인이라고 볼 수 있는 데이터 자체를 직접 전처리를 통해 현재 학습에 최적화된 데이터로 바꿔줌으로써, 기존의 AI 모델 종류에 상관없이 쉽게 확장될 수 있다는 점에 있다. 실제로 본 기법을 통해 시간에 따라 데이터의 분포가 변화되었을 때에도 AI 모델의 성능, 즉 정확도를 안정적으로 유지할 수 있었다. 
 
제1 저자인 김민수 박사과정 학생은 “이번 연구를 통해 인공지능을 한번 잘 학습하는 것도 중요하지만, 그것을 변화하는 환경에 따라 계속해서 관리하고 성능을 유지하는 것도 중요하다는 사실을 알릴 수 있으면 좋겠다ˮ고 밝혔다. 연구팀을 지도한 황의종 교수는 “인공지능이 변화하는 데이터에 대해서도 성능이 저하되지 않고 유지하는 데에 도움이 되기를 기대한다”고 말했다. 
 

 

본 연구에는 김민수 박사과정이 제1 저자, 황성현 박사과정이 제2 저자, 그리고 황의종 교수가 교신 저자로 참여했다. 이번 연구는 지난 2월 캐나다 밴쿠버에서 열린 인공지능 최고 권위 국제학술 대회인 ‘국제 인공지능 학회(Association for the Advancement of Artificial Intelligence, AAAI)’에서 발표되었다. (논문명: Quilt: Robust Data Segment Selection against Concept Drifts) 
 

 

한편, 이 기술은 SK 하이닉스 인공지능협력센터(AI Collaboration Center; AICC)의 지원을 받은 ‘노이즈 및 변동성이 있는 FDC 데이터에 대한 강건한 학습’ 과제 (K20.05) 와 정보통신기획평가원의 지원을 받은 ‘강건하고 공정하며 확장가능한 데이터 중심의 연속 학습’ 과제 (2022-0-00157) 와 한국연구재단의 지원을 받은 ‘데이터 중심의 신뢰 가능한 인공지능’ 과제 성과다.
 

 

체온으로 부드러워지는 전자잉크 최초 개발​

체온으로 부드러워지는 전자잉크 최초 개발​

images 000074 photo1

< 전기및전자공학부 정재웅 교수, 신소재공학과 스티브박 교수, 신소재공학과 권도아 학사과정, 전기및전자공학부 이시목 박사과정 >

 

차세대 웨어러블 및 임플란터블 기기, 의료기기, 로보틱스 등 다양한 분야에 활용될 체온에 따라 부드럽게 변할 수 있는 전자잉크를 최초로 개발하였다.

전기및전자공학부 정재웅 교수 연구팀이 신소재공학과 스티브박 교수 연구팀과 공동연구를 통해 작은 노즐을 통한 직접 잉크 쓰기 방식으로 고해상도 프린팅이 가능하고 체온에 의해 부드러워져 인체 친화적 바이오 전자소자 구현을 가능하게 하는 액체금속 기반 전자잉크를 최초로 개발했다고 6일 밝혔다. 

images 000074 photo2 1

< 전자잉크의 제작과정 및 3D 직접쓰기 프린팅 기법 >

 

최근 웨어러블 및 임플란터블 생체 소자와 소프트 로보틱스 분야에서는 부드러운 사람 피부나 조직에 적용돼 건강 상태를 모니터링하고 질환을 치료하는 기술이 활발히 연구되고 있다. 기존 의료기기 예를 들어보면,  딱딱한 형태의 의료기기인 경우 부드러운 피부와의 강성도 차이로 인해 피부 부착 시 불편함을 야기하거나 조직 삽입 시 염증 반응을 유발할 수 있다. 

반면, 피부처럼 부드러운 유연한 의료기기는 피부나 조직에 적용 시 우리 몸의 일부처럼 이질감 없이 사용될 수 있지만, 부드러운 특성으로 인해 정교한 핸들링을 어렵게 한다. 

 

images 000074 photo3

< 제안된 갈륨 기반 전자잉크 >

 

연구팀은 이러한 고정된 강성을 갖는 기존 바이오 전자기기의 한계를 극복하기 위해, 상온에서는 단단하여 손쉬운 핸들링으로 인체 적용을 용이하게 하고, 피부 부착 또는 조직 내 이식 후에는 체온에 의해 부드럽게 변하여 조직의 일부처럼 함께 움직일 수 있는 전자 회로 제작을 가능하게 하는, 고해상도 패터닝이 가능한 액체금속 갈륨 기반 전자잉크를 개발했다.

 

images 000074 photo4

< 양방향성 가변강성을 가진 광혈류 전자센서 >

 

이 전자 잉크의 핵심 소재인 갈륨은 금속임에도 불구하고 미온(29.76 ℃)에서 녹는 점을 가져 쉽게 고체와 액체 간의 상태 변화가 가능하고 뛰어난 전기전도성과 무독성을 가진다. 연구팀은 또한 기존 갈륨의 높은 표면장력과 낮은 점도 문제를 해결함으로써, 고해상도 프린팅이 가능한 전자잉크를 구현했다. 

개발된 잉크는 상용회로도선 정도의 딱딱한 상태와 피부조직처럼 부드러운 상태 간의 뛰어난 가변 강성률, 빠른 강성 변화, 높은 열전도율, 그리고 우수한 전기전도성을 가진다. 이 전자잉크는 3D 프린팅을 활용해 사용자 맞춤형 전자소자 제작도 가능하게 한다. 

 

images 000074 photo5

< 가변강성 무선광전자장치 >

 

연구팀은 이 기술을 통해 초박막 광 혈류측정 전자 피부센서와 무선 광전자 임플란트 장치를 제작했다. 이 기기들은 상온(25℃)에서는 딱딱하여 다루기 쉬운 반면, 체온(~36.7℃)에 노출되면 부드럽게 변환돼 피부나 조직에 적용 시 기계적 스트레스를 주지 않고 조직 변형에 순응하며 안정적으로 동작하는 게 가능하다. 사용 후 인체에서 제거 시 다시 딱딱한 형태로 변형될 수 있어 재사용을 용이하게 한다. 위와 같은 특성은 다양한 웨어러블 및 임플란터블 장치에 폭넓게 활용될 수 있을 것으로 기대된다.

정재웅 교수는 “체온에 반응해 강성을 변환할 수 있고 고해상도 프린팅이 가능한 전자잉크는 기계적 특성 변환을 필요로 하는 다목적 전자기기, 센서, 로봇 기술뿐만 아니라 의료 기기 분야에서 고정된 형태를 갖는 기존 전자기기의 한계를 극복해 다양한 새로운 가능성을 열 수 있을 것ˮ이라고 말했다.

신소재공학부 권도아 학사과정과 전기및전자공학부 이시목 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)’에 2월 28일 字에 게재됐다. (논문명 : Body-temperature Softening Electronic Ink for Additive Manufacturing of Transformative Bioelectronics via Direct Writing) 

 

images 000074 photo6

< 연구내용 대표 이미지 >

 

한편 이번 연구는 과학기술정보통신부에서 추진하는 한국연구재단 전자약 기술개발사업, 기초연구실 지원사업, 중견연구자 지원사업, 한국전자통신연구원 개방형융합선행연구의 지원을 받아 수행됐다.

해킹 공격 막는 암호 반도체 최초 개발​

해킹 공격 막는 암호 반도체 최초 개발​

images 000074 photo1.jpg 3

< (왼쪽부터) 전기및전자공학부 최양규 교수, 류승탁 교수, 김승일 박사과정 >

 

사물인터넷(IoT), 자율 주행 등 5G/6G 시대 소자 또는 기기 간의 상호 정보 교환이 급증함에 따라 해킹 공격이 고도화되고 있다. 이에 따라, 기기에서 데이터를 안전하게 전송하기 위해서는 보안 기능 강화가 필수적이다. 

우리 대학 전기및전자공학부 최양규 교수와 류승탁 교수 공동연구팀이 ‘해킹 막는 세계 최초 보안용 암호 반도체’를 개발하는 데 성공했다고 29일 밝혔다. 

 

연구팀은 100% 실리콘 호환 공정으로 제작된 핀펫(FinFET) 기반 보안용 암호반도체 크립토그래픽 트랜지스터(cryptographic transistor, 이하 크립토리스터(cryptoristor))를 세계 최초로 개발했다. 이는 트랜지스터 하나로 이루어진 독창적 구조를 갖고 있을 뿐만 아니라, 동작 방식 또한 독특해 유일무이한 특성을 구비한 난수발생기다. 

 

인공지능 등의 모든 보안 환경에서 가장 중요한 요소는 난수발생기이다. 가장 널리 사용되는 보안 칩인 ‘고급 암호화 표준(advanced encryption standard, AES)’에서 난수발생기는 핵심 요소로, AES 보안 칩 전체 면적의 약 75%, 에너지 소모의 85% 이상을 차지한다. 따라서, 모바일 혹은 사물인터넷(IoT)에 탑재가 가능한 저전력/초소형 난수발생기 개발이 시급하다. 

기존의 난수발생기는 전력 소모가 매우 크고 실리콘 CMOS 공정과의 호환성이 떨어진다는 단점이 있고, 회로 기반의 난수발생기들은 점유 면적이 매우 크다는 단점이 있다. 

 

연구팀은 기존 세계 최고 수준 연구 대비 전력 소모와 점유 면적 모두 수천 배 이상 작은 암호 반도체인 단일 소자 기반의 크립토리스터(cryptoristor)를 개발했다. 절연층이 실리콘 하부에 형성되어 있는 실리콘 온 인슐레이터(Silicon-on-Insulator, SOI) 기판 위에 제작된 핀펫(FinFET)이 가지는 내재적인 전위 불안정성을 이용해 무작위적으로 0과 1을 예측 불가능하게 내보내는 난수발생기를 개발했다.

 

 

images 000074 image1.jpg 4

권경하 교수 연구팀, 당뇨병 만성상처 추적 스마트 헬스케어 기기 개발

[권경하 교수 연구팀, 당뇨병 만성상처 추적 스마트 헬스케어 기기 개발]
 
IMG 0103
<(좌측부터) 전기및전자공학부 권경하 교수, 심영민 박사과정, 중앙대 첨단소재공학과 류한준 교수 사진>
 

우리 학부 권경하 교수 연구팀이 당뇨병 등 상처 부위의 시공간 온도 변화 및 열전달 특성 추적을 통해 상처 치유 과정을 효과적으로 모니터링할 수 있는 무선 시스템을 개발했다. 중앙대학교 류한준 교수와 상처 치유 과정을 실시간으로 추적해 적절한 치료를 제공할 수 있게 해주는 디지털 헬스케어 기술을 개발했다고 5일 밝혔다.     

피부는 유해 물질로부터 인체를 보호하는 장벽 기능을 한다. 피부 손상은 집중 치료가 필요한 환자들에게 감염과 관련된 심각한 건강 위험을 초래할 수 있다. 특히 당뇨병 환자의 경우, 정상적인 혈액 순환과 상처 치유 과정에 문제가 생겨 만성 상처가 쉽게 발생한다. 이러한 만성 상처의 재생을 위해 미국에서만 매년 수백억 달러의 의료 비용이 지출되고 있다. 상처 치유를 촉진하는 다양한 방법이 있지만, 환자별 상처 상태에 따라 맞춤 관리가 필요하다.

실시간 상처 모니터링 시스템의 개략도

< 실시간 상처 모니터링 시스템의 개략도 >

이에 연구팀은 상처 부위와 주변 건강한 피부 사이의 온도 차이를 활용해 상처 내 발열 반응을 추적했으며, 열 전송 특성을 측정해 피부 표면 근처의 수분 변화를 관찰함으로써 흉터 조직의 형성 과정을 파악할 수 있는 기반으로 활용했다. 연구팀은 당뇨병이 있는 쥐를 통해 병적 상태에서 상처 치유가 지연되는 과정에서 실험을 진행했고, 수집된 데이터가 상처 치유 과정과 흉터 조직 형성을 정확히 추적할 수 있음을 입증했다.

해당 시스템은 상처가 치유된 후에 기기를 제거하는 과정에서 발생할 수 있는 조직 손상을 최소화하기 위해, 체내에서 자연 분해가 가능한 생분해성 센서 모듈과 통합됐다. 이 생분해성 모듈은 사용 후 별도로 제거할 필요 없이 몸속에서 저절로 분해되어 사라지므로, 추가적인 불편함이나 조직 손상의 위험을 최소화한다. 생분해성 재료를 사용한 이 장치는 사용 후 제거할 필요가 없으므로 상처 부위 내부에서도 모니터링할 수 있는 가능성을 제시한다.

연구를 주도한 권경하 교수는 “상처 부위의 온도와 열전달 특성을 지속적으로 모니터링함으로써, 의료 전문가들이 당뇨병 환자의 상처 상태를 더 정확하게 파악하고 적절한 치료를 제공할 수 있게 될 것으로 기대된다ˮ면서 “생분해성 센서를 사용해 상처 치유가 완료된 후 장치를 제거할 필요 없이 안전하게 분해될 수 있어, 병원뿐만 아니라 가정에서도 실시간 모니터링이 가능해질 것ˮ이라고 말했다.

연구팀은 향후 이 기기를 항균 특성을 가진 재료와 통합해, 염증 반응, 박테리아 감염 및 기타 병변을 관측 및 예방하는 기술로 확장할 계획이다. 온도 및 열전달 특성 변화를 통해 감염 수준을 감지 함으로써 병원이나 가정에서 실시간으로 사용할 수 있는 항균, 범용 상처 모니터링 플랫폼을 제공하는 것을 목표로 한다. 

생분해성 상처 모니터링 센서 이미지 - 저널 표지

< 생분해성 상처 모니터링 센서 이미지 – 저널 표지 >

이번 연구 결과는 국제 학술지 `어드밴스드 헬스케어 머티리얼스(Advanced Healthcare Materials)’에 지난 2월 19일 발표됐으며, 표지 논문(Inside Back Cover Journal)으로 선정됐다. (논문명 : Materials and Device Designs for Wireless Monitoring of Temperature and Thermal Transport Properties of Wound Beds during Healing)

한편, 이번 연구는 한국연구재단의 기초연구사업, 지역혁신선도연구센터사업 및 BK21의 지원을 받아 수행됐다.