Bayes 결정이론, 모수형 확률 밀도 함수 추정, 비모수형 확률 밀도 함수 추정 및 인식 기법, 특징 변환 및 선정, 선형 판별 함수, Support Vector Machine, 다계층 신경회로망, 비관리형 학습법, Clustering 등 통계적 방법에 근거한 패턴 인식 기법들에 관하여 강의한다.
이 과목은 학생들에게 최근 머신 러닝 기술과 알고리즘들을 소개하고, 기초적인 개념과 직관력을 심어주는 것을 목적으로 한다. 강의에서 다룰 내용은 perceptron과 같은 고전적 개념에서부터 boosting, support vector machine, graphical model 등 최신 개념까지 포괄한다. 이 강의에서 소개될 대부분의 알고리즘은 통계적 추론을 기반으로 한다.
타학과 선수과목 : CS101 프로그래밍기초
이 과목은 전통적인 정보처리시스템인 von Neumann 기계와 생물학적인 뇌 사이의 구조적 및 알고리즘적인 차이에 대하여 논의하고, 뇌를 모방한 정보처리 시스템의 기본 디자인을 구현해 보는데 그 목적이 있다. 이를 위하여, 신경세포 및 인공신경망 모델을 이용한 시스템 규모 모델링을 비롯하여, 병렬 프로그래밍, 기계학습, Bayesian 모델 등 neuromorphic 연구에 필요한 각종 배경지식을 공부할 예정이다.
신경회로망의 이론과 응용에 대하여 강의한다. 특히 신경회로망의 구조와 기능 그리고 학습과 일반화에 대하여 설명하고 다양한 신경회로망 모델에 대하여 알아본다. 신경회로망의 여러 가지 응용을 설명한다.
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical
Engineering. All rights reserved.
Made by PRESSCAT