이 과목은 학생들에게 최근 머신 러닝 기술과 알고리즘들을 소개하고, 기초적인 개념과 직관력을 심어주는 것을 목적으로 한다. 강의에서 다룰 내용은 perceptron과 같은 고전적 개념에서부터 boosting, support vector machine, graphical model 등 최신 개념까지 포괄한다. 이 강의에서 소개될 대부분의 알고리즘은 통계적 추론을 기반으로 한다.
타학과 선수과목 : CS101 프로그래밍기초
이 과목은 전통적인 정보처리시스템인 von Neumann 기계와 생물학적인 뇌 사이의 구조적 및 알고리즘적인 차이에 대하여 논의하고, 뇌를 모방한 정보처리 시스템의 기본 디자인을 구현해 보는데 그 목적이 있다. 이를 위하여, 신경세포 및 인공신경망 모델을 이용한 시스템 규모 모델링을 비롯하여, 병렬 프로그래밍, 기계학습, Bayesian 모델 등 neuromorphic 연구에 필요한 각종 배경지식을 공부할 예정이다.
디지털 신호처리 기법들이 음성 통신에 어떻게 응용될 수 있는지 알아본다. 초반기에는 신호처리, 음성의 특성 그리고 생성 과정에 관한 기본적인 내용을 다루고, 후반기에 이를 바탕으로 음성 부호화, 음성인식, 음성 합성에 대하여 알아본다. 학생들은 여러 프로젝트를 수행함으로써 수업 시간에 배운 내용을 실제적으로 적용하는 기회도 갖게 될 것이다.
여러 가지 영상신호 발생기기로부터 얻어지는 영상신호에 대한 기본적인 디지털 처리와 분석, 이해에 대해 배운다. 주제는 샘플링, 선형과 비선형 영상처리, 영상압축, 영상재구성, 영상분할 등으로 이루어져 있다.
신경회로망의 이론과 응용에 대하여 강의한다. 특히 신경회로망의 구조와 기능 그리고 학습과 일반화에 대하여 설명하고 다양한 신경회로망 모델에 대하여 알아본다. 신경회로망의 여러 가지 응용을 설명한다.
이 과목에서는 통신과 신호처리를 포함하는 전기전자공학의 여러 영역에서 자주 다루는 비선형 신호 처리와 그에 필요한 수리통계학과 확률론의 여러 개념, 기초와 고급이론, 여러 가지 방법론, 특히, 전기전자공학에서의 응용을 살펴본다.
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical Engineering. All rights reserved. Made by PRESSCAT
Copyright ⓒ 2015 KAIST Electrical
Engineering. All rights reserved.
Made by PRESSCAT